solar-sim/assets/moon.txt
2025-08-13 20:13:35 +09:00

127 lines
6.6 KiB
Plaintext

curl -s "https://ssd.jpl.nasa.gov/api/horizons.api?format=text&COMMAND=%27301%27&CENTER=%27%40sun%27&EPHEM_TYPE=%27VECTORS%27&OUT_UNITS=%27AU-D%27&START_TIME=%272000-01-01%2012:00%27&STOP_TIME=%272000-01-01%2012:01%27&STEP_SIZE=%271%20m%27&VEC_TABLE=2&REF_PLANE=%27ECLIPTIC%27&REF_SYSTEM=%27J2000%27"
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: July 31, 2013 Moon / (Earth) 301
GEOPHYSICAL DATA (updated 2018-Aug-15):
Vol. mean radius, km = 1737.53+-0.03 Mass, x10^22 kg = 7.349
Radius (gravity), km = 1738.0 Surface emissivity = 0.92
Radius (IAU), km = 1737.4 GM, km^3/s^2 = 4902.800066
Density, g/cm^3 = 3.3437 GM 1-sigma, km^3/s^2 = +-0.0001
V(1,0) = +0.21 Surface accel., m/s^2 = 1.62
Earth/Moon mass ratio = 81.3005690769 Farside crust. thick. = ~80 - 90 km
Mean crustal density = 2.97+-.07 g/cm^3 Nearside crust. thick.= 58+-8 km
Heat flow, Apollo 15 = 3.1+-.6 mW/m^2 Mean angular diameter = 31'05.2"
Heat flow, Apollo 17 = 2.2+-.5 mW/m^2 Sid. rot. rate, rad/s = 0.0000026617
Geometric Albedo = 0.12 Mean solar day = 29.5306 d
Obliquity to orbit = 6.67 deg Orbit period = 27.321582 d
Semi-major axis, a = 384400 km Eccentricity = 0.05490
Mean motion, rad/s = 2.6616995x10^-6 Inclination = 5.145 deg
Apsidal period = 3231.50 d Nodal period = 6798.38 d
Perihelion Aphelion Mean
Solar Constant (W/m^2) 1414+-7 1323+-7 1368+-7
Maximum Planetary IR (W/m^2) 1314 1226 1268
Minimum Planetary IR (W/m^2) 5.2 5.2 5.2
********************************************************************************
*******************************************************************************
Ephemeris / API_USER Wed Aug 13 04:01:18 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Moon (301) {source: DE441}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2000-Jan-01 12:00:00.0000 TDB
Stop time : A.D. 2000-Jan-01 12:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2451545.000000000 = A.D. 2000-Jan-01 12:00:00.0000 TDB
X =-1.790843809223965E-01 Y = 9.654035607264573E-01 Z = 2.383726922995396E-04
VX=-1.683595459141215E-02 VY=-3.580960720855671E-03 VZ=-6.540550604528720E-06
2451545.000694444 = A.D. 2000-Jan-01 12:01:00.0000 TDB
X =-1.790960725225740E-01 Y = 9.654010738956424E-01 Z = 2.383681475637660E-04
VX=-1.683585392087164E-02 VY=-3.581112024431721E-03 VZ=-6.548288423082821E-06
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************