Compare commits

..

No commits in common. "bd37295da9ab36855af4448fded9f6593f726d84" and "1e6d352e006e46335951b406c593381dafef2c25" have entirely different histories.

77 changed files with 627 additions and 11234 deletions

1356
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -7,19 +7,6 @@ edition = "2024"
bevy = "0.16" bevy = "0.16"
bevy-inspector-egui = "0.33.1" bevy-inspector-egui = "0.33.1"
bevy_panorbit_camera = "0.26" bevy_panorbit_camera = "0.26"
big_space = { version = "0.10.0", features = ["camera"] }
chrono = "0.4.41"
futures = "0.3.31"
iyes_perf_ui = "0.5.0"
rayon = "1.11.0"
regex = "1.11.1"
reqwest = { version = "0.12", features = ["json"] }
rhorizons = "0.5.0"
ron = "0.10.1"
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
thiserror = "2.0"
tokio = { version = "1.47.1", features = ["full"] }
# Enable a small amount of optimization in the dev profile. # Enable a small amount of optimization in the dev profile.
[profile.dev] [profile.dev]

View File

@ -1,10 +1,14 @@
curl -s "https://ssd.jpl.nasa.gov/api/horizons.api?format=text&COMMAND=%27399%27&CENTER=%27%40sun%27&EPHEM_TYPE=%27VECTORS%27&OUT_UNITS=%27AU-D%27&START_TIME=%272000-01-01%2012:00%27&STOP_TIME=%272000-01-01%2012:01%27&STEP_SIZE=%271%20m%27&VEC_TABLE=2&REF_PLANE=%27ECLIPTIC%27&REF_SYSTEM=%27J2000%27"
API VERSION: 1.2 API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API API SOURCE: NASA/JPL Horizons API
******************************************************************************* *******************************************************************************
Revised: April 12, 2021 Earth 399 Revised: April 12,
2021 Earth 399
GEOPHYSICAL PROPERTIES (revised May 9, 2022): GEOPHYSICAL PROPERTIES (revised May 9,
2022):
Vol. Mean Radius (km) = 6371.01+-0.02 Mass x10^24 (kg)= 5.97219+-0.0006 Vol. Mean Radius (km) = 6371.01+-0.02 Mass x10^24 (kg)= 5.97219+-0.0006
Equ. radius, km = 6378.137 Mass layers: Equ. radius, km = 6378.137 Mass layers:
Polar axis, km = 6356.752 Atmos = 5.1 x 10^18 kg Polar axis, km = 6356.752 Atmos = 5.1 x 10^18 kg
@ -23,8 +27,11 @@ API SOURCE: NASA/JPL Horizons API
Moment of inertia = 0.3308 Atm. pressure = 1.0 bar Moment of inertia = 0.3308 Atm. pressure = 1.0 bar
Mean surface temp (Ts), K= 287.6 Volume, km^3 = 1.08321 x 10^12 Mean surface temp (Ts), K= 287.6 Volume, km^3 = 1.08321 x 10^12
Mean effect. temp (Te), K= 255 Magnetic moment = 0.61 gauss Rp^3 Mean effect. temp (Te), K= 255 Magnetic moment = 0.61 gauss Rp^3
Geometric albedo = 0.367 Vis. mag. V(1,0)= -3.86 Geometric albedo = 0.367 Vis. mag. V(1,
Solar Constant (W/m^2) = 1367.6 (mean), 1414 (perihelion), 1322 (aphelion) 0)= -3.86
Solar Constant (W/m^2) = 1367.6 (mean),
1414 (perihelion),
1322 (aphelion)
HELIOCENTRIC ORBIT CHARACTERISTICS: HELIOCENTRIC ORBIT CHARACTERISTICS:
Obliquity to orbit, deg = 23.4392911 Sidereal orb period = 1.0000174 y Obliquity to orbit, deg = 23.4392911 Sidereal orb period = 1.0000174 y
Orbital speed, km/s = 29.79 Sidereal orb period = 365.25636 d Orbital speed, km/s = 29.79 Sidereal orb period = 365.25636 d
@ -33,19 +40,30 @@ API SOURCE: NASA/JPL Horizons API
******************************************************************************* *******************************************************************************
Ephemeris / API_USER Thu Aug 14 15:51:50 2025 Pasadena, USA / Horizons Ephemeris / API_USER Wed Aug 13 04: 00: 37 2025 Pasadena, USA / Horizons
******************************************************************************* *******************************************************************************
Target body name: Earth (399) {source: DE441} Target body name: Earth (399) {source: DE441
Center body name: Sun (10) {source: DE441} }
Center body name: Sun (10) {source: DE441
}
Center-site name: BODY CENTER Center-site name: BODY CENTER
******************************************************************************* *******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB Start time : A.D. 2000-Jan-01 12: 00: 00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB Stop time : A.D. 2000-Jan-01 12: 01: 00.0000 TDB
Step-size : 1 minutes Step-size : 1 minutes
******************************************************************************* *******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)} Center geodetic : 0.0,
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)} 0.0,
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c} 0.0 {E-lon(deg),Lat(deg),Alt(km)
}
Center cylindric: 0.0,
0.0,
0.0 {E-lon(deg),Dxy(km),Dz(km)
}
Center radii : 695700.0,
695700.0,
695700.0 km {Equator_a, b, pole_c
}
Output units : AU-D Output units : AU-D
Calendar mode : Mixed Julian/Gregorian Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states Output type : GEOMETRIC cartesian states
@ -57,12 +75,12 @@ JDTDB
VX VY VZ VX VY VZ
******************************************************************************* *******************************************************************************
$$SOE $$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB 2451545.000000000 = A.D. 2000-Jan-01 12: 00: 00.0000 TDB
X =-1.786834409731047E-01 Y = 9.669827953774551E-01 Z =-5.109423915082682E-05 X =-1.771350992727098E-01 Y = 9.672416867665306E-01 Z =-4.085281582511366E-06
VX=-1.720473858166942E-02 VY=-3.193533189307208E-03 VZ= 5.457174067040888E-09 VX=-1.720762506872895E-02 VY=-3.158782144324866E-03 VZ= 1.049888594613343E-07
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB 2451545.000694444 = A.D. 2000-Jan-01 12: 01: 00.0000 TDB
X =-1.786953886946605E-01 Y = 9.669805775731443E-01 Z =-5.109423538992340E-05 X =-1.771470489993106E-01 Y = 9.672394930949845E-01 Z =-4.085208640488331E-06
VX=-1.720469949887746E-02 VY=-3.193743226004856E-03 VZ= 5.374519991317428E-09 VX=-1.720758754114626E-02 VY=-3.158991907845201E-03 VZ= 1.050842029536420E-07
$$EOE $$EOE
******************************************************************************* *******************************************************************************
@ -98,7 +116,10 @@ REFERENCE FRAME AND COORDINATES
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch. of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]: Symbol meaning [
1 au= 149597870.700 km,
1 day= 86400.0 s
]:
JDTDB Julian Day Number, Barycentric Dynamical Time JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au) X X-component of position vector (au)
@ -118,14 +139,14 @@ Computations by ...
4800 Oak Grove Drive, Jet Propulsion Laboratory 4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/ General site: https: //ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html Mailing list: https: //ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html System news : https: //ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html User Guide : https: //ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x Connect : browser https: //ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html API https: //ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775 command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt e-mail/batch https: //ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS scripts https: //ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov Author : Jon.D.Giorgini@jpl.nasa.gov
******************************************************************************* *******************************************************************************

View File

@ -1,328 +0,0 @@
// mass kg f64
// radius km f64
// position au f64
// velocity au/day f64
(
bodies: [
(
name: "Sun",
mass: 1.98841e30,
radius: 695700.0,
position: (0.0, 0.0, 0.0),
velocity: (0.0, 0.0, 0.0),
model: (
path: "sun.glb",
scale: (4.016625881e-2, 4.016625881e-2, 4.016625881e-2),
),
),
(
name: "Mercury",
mass: 3.302e23,
radius: 2439.4,
position: (-3.873030085256687e-01, -1.617241946342014e-01, 2.230772540124238e-02),
velocity: (5.024430196457658e-03, -2.474345331076241e-02, -2.482923861184285e-03),
model: (
path: "mercury.glb",
scale: (1.409040560e-4, 1.407730015e-4, 1.409040560e-4),
),
),
(
name: "Venus",
mass: 4.8685e24,
radius: 6051.84,
position: (4.534187654737982e-01, 5.622160792960551e-01, -1.844136025242647e-02),
velocity: (-1.580627428004959e-02, 1.261006264179427e-02, 1.085217883057661e-03),
model: (
path: "venus.glb",
scale: (3.494008561e-4, 3.494008561e-4, 3.494008561e-4),
),
),
(
name: "Earth",
mass: 5.97219e24,
radius: 6371.01,
position: (-1.786834409731047e-01, 9.669827953774551e-01, -5.109423915082682e-05),
velocity: (-1.720473858166942e-02, -3.193533189307208e-03, 5.457174067040888e-09),
model: (
path: "earth.glb",
scale: (3.686534474e-4, 3.674174368e-4, 3.686534474e-4),
),
),
(
name: "Mars",
mass: 6.4171e23,
radius: 3389.92,
position: (-5.216858665681381e-01, 1.525234576802456e+00, 4.475559803760917e-02),
velocity: (-1.271183490340250e-02, -3.338839586395265e-03, 2.417788175776839e-04),
model: (
path: "mars.glb",
scale: (1.964640105e-4, 1.953076135e-4, 1.964640105e-4),
),
),
(
name: "Jupiter",
mass: 1.89819e27,
radius: 69911.0,
position: (1.056033545576702e+00, 4.971452162023883e+00, -4.427806378454757e-02),
velocity: (-7.476272400979211e-03, 1.924466075080766e-03, 1.592575331437652e-04),
model: (
path: "jupiter.glb",
scale: (4.216764122e-3, 3.943203948e-3, 4.216764122e-3),
),
),
(
name: "Saturn",
mass: 5.6834e26,
radius: 58232.0,
position: (9.461067271500818e+00, -1.764614720843175e+00, -3.458764004169705e-01),
velocity: (7.093807804551229e-04, 5.475097536527790e-03, -1.232345969963958e-04),
model: (
path: "saturn.glb",
scale: (1.828302280e-3, 1.649197191e-3, 1.828302280e-3),
),
),
(
name: "Uranus",
mass: 8.6813e25,
radius: 25362.0,
position: (1.110362881512566e+01, 1.609448391218202e+01, -8.419833258524990e-02),
velocity: (-3.273728238819980e-03, 2.053528328895527e-03, 5.008589052969062e-05),
model: (
path: "uranus.glb",
scale: (1.486925757e-3, 1.452834462e-3, 1.486925757e-3),
),
),
(
name: "Neptune",
mass: 1.02409e26,
radius: 24624.0,
position: (2.987992735576156e+01, -6.341879950443392e-01, -6.754997950415415e-01),
velocity: (3.941595250081164e-05, 3.160389775728832e-03, -6.636996572427530e-05),
model: (
path: "neptune.glb",
scale: (1.437890343e-3, 1.413329272e-3, 1.437890343e-3),
),
),
(
name: "Moon",
mass: 7.349e22,
radius: 1737.53,
position: (-1.776670337217189e-01, 9.646511868801392e-01, -2.560710414773878e-04),
velocity: (-1.666610342674751e-02, -2.935662211368250e-03, 2.214641479437884e-05),
model: (
path: "moon.glb",
scale: (1.003505604e-4, 1.003505604e-4, 1.003505604e-4),
),
),
(
name: "Phobos",
mass: 1.08e16,
radius: 11.1,
position: (-5.216607506283159e-01, 1.525290094552813e+00, 4.474552444674667e-02),
velocity: (-1.371531677510715e-02, -2.797359927923991e-03, 7.604209362929195e-04),
model: (
path: "phobos.glb",
scale: (3.111071419e-5, 2.177749957e-5, 2.728170512e-5),
),
),
(
name: "Deimos",
mass: 1.80e15,
radius: 6.2,
position: (-5.215476623931578e-01, 1.525280501692070e+00, 4.469744727198185e-02),
velocity: (-1.290124900899404e-02, -2.594527535740538e-03, 3.799855876623048e-04),
model: (
path: "deimos.glb",
scale: (3.572769492e-5, 2.336041507e-5, 2.748284533e-5),
),
),
(
name: "Io",
mass: 8.93e22,
radius: 1821.49,
position: (1.053815818667817e+00, 4.969715993299296e+00, -4.437108516416628e-02),
velocity: (-1.329530996368361e-03, -5.983335980023409e-03, -3.295420474951598e-05),
model: (
path: "io.glb",
scale: (1.056204637e-4, 1.048294944e-4, 1.050431092e-4),
),
),
(
name: "Europa",
mass: 4.80e22,
radius: 1560.8,
position: (1.060479105966296e+00, 4.971193788432235e+00, -4.418907806556983e-02),
velocity: (-6.967074192246404e-03, 9.896683771810605e-03, 4.296001484155991e-04),
model: (
path: "europa.glb",
scale: (9.021675214e-5, 9.003777086e-5, 9.008396592e-5),
),
),
(
name: "Ganymede",
mass: 1.48e23,
radius: 2631.2,
position: (1.062520398626604e+00, 4.968458682597362e+00, -4.429967587277176e-02),
velocity: (-4.841408463186764e-03, 7.634290231598638e-03, 4.147177169244575e-04),
model: (
path: "ganymede.glb",
scale: (1.519124053e-4, 1.519124053e-4, 1.519124053e-4),
),
),
(
name: "Callisto",
mass: 1.08e23,
radius: 2410.3,
position: (1.046927187861326e+00, 4.980213520221207e+00, -4.412635447845523e-02),
velocity: (-1.076662893789138e-02, -1.453153071657253e-03, 9.400054299331563e-06),
model: (
path: "callisto.glb",
scale: (1.391587430e-4, 1.391587430e-4, 1.391587430e-4),
),
),
(
name: "Mimas",
mass: 3.75e19,
radius: 198.8,
position: (9.462113317387443e+00, -1.764120396234732e+00, -3.462575454806998e-01),
velocity: (-3.600569225193193e-03, 1.195945377622506e-02, -3.321658418910402e-03),
model: (
path: "mimas.glb",
scale: (3.022084638e-5, 2.771941035e-5, 2.860654604e-5),
),
),
(
name: "Enceladus",
mass: 1.0805e20,
radius: 252.3,
position: (9.462107070733344e+00, -1.763590731315564e+00, -3.465134777458668e-01),
velocity: (-4.799068161710644e-03, 9.904458072213898e-03, -1.910803547584920e-03),
model: (
path: "enceladus.glb",
scale: (1.481480831e-5, 1.433560737e-5, 1.451458593e-5),
),
),
(
name: "Tethys",
mass: 6.176e20,
radius: 536.3,
position: (9.463028141754283e+00, -1.764725184828637e+00, -3.460263238634043e-01),
velocity: (8.124741088132637e-04, 1.132977234261396e-02, -3.072248079372077e-03),
model: (
path: "tethys.glb",
scale: (3.129428660e-5, 3.059098162e-5, 3.070722960e-5),
),
),
(
name: "Dione",
mass: 1.09572e21,
radius: 562.5,
position: (9.460669031566509e+00, -1.762393870120674e+00, -3.470001695782450e-01),
velocity: (-4.995042476514132e-03, 4.898468069198046e-03, 7.315317142172153e-04),
model: (
path: "dione.glb",
scale: (3.252791430e-5, 3.230852235e-5, 3.240667138e-5),
),
),
(
name: "Rhea",
mass: 2.309e21,
radius: 764.5,
position: (9.463441058546145e+00, -1.766997606737125e+00, -3.448366300385151e-01),
velocity: (4.307393238751094e-03, 8.273257376182423e-03, -1.932435874857194e-03),
model: (
path: "rhea.glb",
scale: (4.416729644e-5, 4.401718616e-5, 4.405760046e-5),
),
),
(
name: "Titan",
mass: 1.34553e23,
radius: 2575.5,
position: (9.468440328490537e+00, -1.762284834421733e+00, -3.478122131916790e-01),
velocity: (-4.611400435334967e-04, 8.260265884102586e-03, -1.443082816825538e-03),
model: (
path: "titan.glb",
scale: (1.486763649e-4, 1.486371038e-4, 1.486549882e-4),
),
),
(
name: "Iapetus",
mass: 1.8059e21,
radius: 734.5,
position: (9.454548058738080e+00, -1.786906158368561e+00, -3.394196336672040e-01),
velocity: (2.477125925502744e-03, 4.942920731685813e-03, -3.564738618756286e-04),
model: (
path: "iapetus.glb",
scale: (4.305300899e-5, 4.111311500e-5, 4.305300899e-5),
),
),
(
name: "Miranda",
mass: 6.59e19,
radius: 235.8,
position: (1.110338075481133e+01, 1.609470886437212e+01, -8.339848717695617e-02),
velocity: (2.787135511093017e-04, 1.302160355796409e-03, 1.366210183434322e-03),
model: (
path: "miranda.glb",
scale: (1.387950124e-5, 1.344648808e-5, 1.352154413e-5),
),
),
(
name: "Ariel",
mass: 1.25e21,
radius: 578.9,
position: (1.110453239435098e+01, 1.609416926126415e+01, -8.504238243640228e-02),
velocity: (-5.417334967749265e-03, 2.196892645955784e-03, -2.298152372242362e-03),
model: (
path: "ariel.glb",
scale: (3.354982618e-5, 3.335352449e-5, 3.336507143e-5),
),
),
(
name: "Umbriel",
mass: 1.28e21,
radius: 584.7,
position: (1.110253678329407e+01, 1.609490555702174e+01, -8.286998450094619e-02),
velocity: (-1.219602563560983e-03, 1.849034126664038e-03, 1.801100761916168e-03),
model: (
path: "umbriel.glb",
scale: (3.375767119e-5, 3.375767119e-5, 3.375767119e-5),
),
),
(
name: "Titania",
mass: 3.34e21,
radius: 788.9,
position: (1.110510884778205e+01, 1.609382177197045e+01, -8.661833178512783e-02),
velocity: (-5.032495225759578e-03, 2.280002002691279e-03, -1.088327315015861e-03),
model: (
path: "titania.glb",
scale: (4.554716361e-5, 4.554716361e-5, 4.554716361e-5),
),
),
(
name: "Oberon",
mass: 3.08e21,
radius: 761.4,
position: (1.110301190463219e+01, 1.609515778477002e+01, -8.040210462613612e-02),
velocity: (-1.519780917379062e-03, 1.720169702110850e-03, 3.926675849694972e-04),
model: (
path: "oberon.glb",
scale: (4.395945143e-5, 4.395945143e-5, 4.395945143e-5),
),
),
(
name: "Triton",
mass: 2.14e22,
radius: 1352.6,
position: (2.987802053077272e+01, -6.355569689698364e-01, -6.751627943073906e-01),
velocity: (-6.787804924900204e-04, 4.636375429506899e-03, 1.865945736548040e-03),
model: (
path: "triton.glb",
scale: (7.809240196e-5, 7.809240196e-5, 7.809240196e-5),
),
),
],
)

View File

@ -1,115 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 29, 2025 Ariel / (Uranus) 701
SATELLITE PHYSICAL PROPERTIES:
Radius (km) = 581.1x577.9x577.7 Density (g cm^-3) = 1.54 +- 0.026
GM (km^3/s^2) = 83.43 +- 1.40 Geometric Albedo = 0.34
V(1,0) = +1.45
SATELLITE ORBITAL DATA (mean elements referred to equatorial plane & IAU pole)
Semi-major axis, a (km) = 191.2 (10^3) Orbital period = 2.520 d
Eccentricity, e = 0.0034 Rotational period = Synchronous
Inclination, i (deg) = 179.69
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:46 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Ariel (701) {source: ura183_merged}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.110453239435098E+01 Y = 1.609416926126415E+01 Z =-8.504238243640228E-02
VX=-5.417334967749265E-03 VY= 2.196892645955784E-03 VZ=-2.298152372242362E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.110452863095813E+01 Y = 1.609417078735579E+01 Z =-8.504397710872791E-02
VX=-5.421235378195795E-03 VY= 2.198251211682732E-03 VZ=-2.294502747948997E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,114 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Mar 12, 2021 Callisto / (Jupiter) 504
SATELLITE PHYSICAL PROPERTIES:
Mean radius (km) = 2410.3 +- 1.5 Density (g cm^-3)= 1.834 +- 0.004
GM (km^3/s^2) = 7179.2834 +- 0.0097 Geometric Albedo = 0.17 +- 0.02
SATELLITE ORBIT (at J2000.0 epoch, 2000-Jan-1.5):
Semi-major axis, a (km)~ 1,883,000 Orbital period ~ 16.691 d
Eccentricity, e ~ 0.00744 Rotational period= Synchronous
Inclination, i (deg) ~ 0.200
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:34 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Callisto (504) {source: jup365_merged}
Center body name: Sun (10) {source: jup365_merged}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.046927187861326E+00 Y = 4.980213520221207E+00 Z =-4.412635447845523E-02
VX=-1.076662893789138E-02 VY=-1.453153071657253E-03 VZ= 9.400054299331563E-06
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.046919711342476E+00 Y = 4.980212510788754E+00 Z =-4.412634795573506E-02
VX=-1.076574531183088E-02 VY=-1.454012353275114E-03 VZ= 9.385381807833990E-06
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,115 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jun 02, 2025 Deimos / (Mars) 402
SATELLITE PHYSICAL PROPERTIES:
Radius (km) = 7.8 x 6.0 x 5.1 Density (g cm^-3) = 1.76 +- 0.30
Mass (10^20 kg ) = 1.80 (10^-5) Geometric Albedo = 0.06
(+- 0.15) V(1,0) = +12.89
SATELLITE ORBITAL DATA:
Semi-major axis, a (km) = 23.4632(10^3) Orbital period = 1.263 d
Eccentricity, e = 0.00033 Rotational period = Synchronous
Inclination, i (deg) = 1.791
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:28 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Deimos (402) {source: mar099}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X =-5.215476623931578E-01 Y = 1.525280501692070E+00 Z = 4.469744727198185E-02
VX=-1.290124900899404E-02 VY=-2.594527535740538E-03 VZ= 3.799855876623048E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X =-5.215566224100128E-01 Y = 1.525278699635617E+00 Z = 4.469771149715475E-02
VX=-1.290359915493358E-02 VY=-2.595396531058469E-03 VZ= 3.809826346570343E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,117 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 26, 2022 Dione / (Saturn) 604
http://ssd.jpl.nasa.gov/?sat_phys_par
http://ssd.jpl.nasa.gov/?sat_elem
SATELLITE PHYSICAL PROPERTIES:
Mean Radius (km) = 562.5 +- 5 Density (g/cm^3) = 1.469 +- 0.012
Mass (10^19 kg) = 109.572 Geometric Albedo = 0.6
GM (km^3/s^2) = 73.116 +- 0.02 V(1,0) = +0.8
SATELLITE ORBITAL DATA (mean values referred to local Laplace plane):
Semi-major axis, a (km) = 377.42(10^3) Orbital period = 2.736915 d
Eccentricity, e = 0.0022 Rotational period = Synchronous
Inclination, i (deg) = 0.028
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:39 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Dione (604) {source: sat441l}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 9.460669031566509E+00 Y =-1.762393870120674E+00 Z =-3.470001695782450E-01
VX=-4.995042476514132E-03 VY= 4.898468069198046E-03 VZ= 7.315317142172153E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 9.460665563295446E+00 Y =-1.762390471236195E+00 Z =-3.469996601384587E-01
VX=-4.993575760054306E-03 VY= 4.890319489938703E-03 VZ= 7.356544990270154E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,117 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 26, 2022 Enceladus / (Saturn) 602
http://ssd.jpl.nasa.gov/?sat_phys_par
http://ssd.jpl.nasa.gov/?sat_elem
SATELLITE PHYSICAL PROPERTIES:
Mean Radius (km) = 252.3 +- 0.6 Density (g/cm^3) = 1.606 +- 0.012
Mass (10^19 kg) = 10.805 Geometric Albedo = 1.04
GM (km^3/s^2) = 7.210367 V(1,0) = +2.2
SATELLITE ORBITAL DATA (mean elements referred to local Laplace plane):
Semi-major axis, a (km) = 238.04(10^3) Orbital period = 1.370218 d
Eccentricity, e = 0.0047 Rotational period = Synchronous
Inclination, i (deg) = 0.009
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:41 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Enceladus (602) {source: sat441l}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 9.462107070733344E+00 Y =-1.763590731315564E+00 Z =-3.465134777458668E-01
VX=-4.799068161710644E-03 VY= 9.904458072213898E-03 VZ=-1.910803547584920E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 9.462103732792631E+00 Y =-1.763583858405023E+00 Z =-3.465148014677353E-01
VX=-4.814191894040593E-03 VY= 9.889516719170488E-03 VZ=-1.901512359359666E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,114 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Mar 12, 2021 Europa / (Jupiter) 502
SATELLITE PHYSICAL PROPERTIES:
Mean radius (km) = 1560.8 +- 0.3 Density (g cm^-3)= 3.013 +- 0.005
GM (km^3/s^2) = 3202.7121+- 0.0054 Geometric Albedo = 0.67 +/- 0.03
SATELLITE ORBIT (at J2000.0 epoch, 2000-Jan-1.5):
Semi-major axis, a (km) ~ 671,000 Orbital period ~ 3.55 d
Eccentricity, e ~ 0.00981 Rotational period = Synchronous
Inclination, i (deg) ~ 0.462
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:31 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Europa (502) {source: jup365_merged}
Center body name: Sun (10) {source: jup365_merged}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.060479105966296E+00 Y = 4.971193788432235E+00 Z =-4.418907806556983E-02
VX=-6.967074192246404E-03 VY= 9.896683771810605E-03 VZ= 4.296001484155991E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.060474264291992E+00 Y = 4.971200661324026E+00 Z =-4.418877980080166E-02
VX=-6.976947895835117E-03 VY= 9.897242536020881E-03 VZ= 4.294023144406136E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,114 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Mar 12, 2021 Ganymede / (Jupiter) 503
SATELLITE PHYSICAL PROPERTIES:
Mean radius (km) = 2631.2 +- 1.7 Density (g cm^-3)= 1.942 +- 0.005
GM (km^3/s^2) = 9887.8328+- 0.0074 Geometric Albedo = 0.43 +- 0.02
SATELLITE ORBIT (at J2000.0 epoch, 2000-Jan-1.5):
Semi-major axis, a (km) ~ 1,070,000 Orbital period ~ 7.155 d
Eccentricity, e ~ 0.00146 Rotational period= Synchronous
Inclination, i (deg) ~ 0.207
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:32 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Ganymede (503) {source: jup365_merged}
Center body name: Sun (10) {source: jup365_merged}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.062520398626604E+00 Y = 4.968458682597362E+00 Z =-4.429967587277176E-02
VX=-4.841408463186764E-03 VY= 7.634290231598638E-03 VZ= 4.147177169244575E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.062517035324768E+00 Y = 4.968463984744183E+00 Z =-4.429938787030207E-02
VX=-4.844900988782714E-03 VY= 7.635892259759473E-03 VZ= 4.147293801627869E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,117 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 26, 2022 Iapetus / (Saturn) 608
http://ssd.jpl.nasa.gov/?sat_phys_par
http://ssd.jpl.nasa.gov/?sat_elem
SATELLITE PHYSICAL PROPERTIES:
Radius (km) = 734.5 +- 4.0 Density (g/cm^3)= 1.088 +- 0.018
Mass (10^19 kg) = 180.59 Geometric Albedo= 0.6
GM (km^3/s^2) = 120.52 +- 0.03 V(1,0) = +1.5 (.7-2.5)
SATELLITE ORBITAL DATA (mean values with respect to local Laplace plane):
Semi-major axis, a (km)= 3560.84 (10^3) Orbital period = 79.33 d
Eccentricity, e = 0.0283 Rotational period = Synchronous
Inclination, i (deg) = 7.489
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:37 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Iapetus (608) {source: sat441l}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 9.454548058738080E+00 Y =-1.786906158368561E+00 Z =-3.394196336672040E-01
VX= 2.477125925502744E-03 VY= 4.942920731685813E-03 VZ=-3.564738618756286E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 9.454549778973153E+00 Y =-1.786902725752121E+00 Z =-3.394198812278713E-01
VX= 2.477151084385878E-03 VY= 4.943014616239762E-03 VZ=-3.565008602876317E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,114 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Mar 12, 2021 Io / (Jupiter) 501
SATELLITE PHYSICAL PROPERTIES:
Mean radius (km) = 1821.49 Density (g cm^-3) = 3.528 +- 0.006
GM (km^3/s^2) = 5959.9155+- 0.004 Geometric Albedo = 0.63 +- 0.02
SATELLITE ORBIT (at J2000.0 epoch, 2000-Jan-1.5):
Semi-major axis, a (km)~ 422,000 Orbital period ~ 1.77 d
Eccentricity, e ~ 0.00472 Rotational period = Synchronous
Inclination, i (deg) ~ 0.0375
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:30 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Io (501) {source: jup365_merged}
Center body name: Sun (10) {source: jup365_merged}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.053815818667817E+00 Y = 4.969715993299296E+00 Z =-4.437108516416628E-02
VX=-1.329530996368361E-03 VY=-5.983335980023409E-03 VZ=-3.295420474951598E-05
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.053814902131768E+00 Y = 4.969711843495328E+00 Z =-4.437110776557460E-02
VX=-1.310099171031782E-03 VY=-5.968091504155077E-03 VZ=-3.213765991234832E-05
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,125 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: April 12, 2021 Jupiter 599
PHYSICAL DATA (revised 2025-Jan-30):
Mass x 10^26 (kg) = 18.9819 Density (g/cm^3) = 1.3262 +- .0003
Equat. radius (1 bar) = 71492+-4 km Polar radius (km) = 66854+-10
Vol. Mean Radius (km) = 69911+-6 Flattening = 0.06487
Geometric Albedo = 0.52 Rocky core mass (Mc/M)= 0.0261
Sid. rot. period (III)= 9h 55m 29.711 s Sid. rot. rate (rad/s)= 0.00017585
Mean solar day, hrs = ~9.9259
GM (km^3/s^2) = 126686531.900 GM 1-sigma (km^3/s^2) = +- 1.2732
Equ. grav, ge (m/s^2) = 24.79 Pol. grav, gp (m/s^2) = 28.34
Vis. magnitude V(1,0) = -9.40
Vis. mag. (opposition)= -2.70 Obliquity to orbit = 3.13 deg
Sidereal orbit period = 11.861982204 y Sidereal orbit period = 4332.589 d
Mean daily motion = 0.0831294 deg/d Mean orbit speed, km/s= 13.0697
Atmos. temp. (1 bar) = 165+-5 K Escape speed, km/s = 59.5
A_roche(ice)/Rp = 2.76 Hill's sphere rad. Rp = 740
Perihelion Aphelion Mean
Solar Constant (W/m^2) 56 46 51
Maximum Planetary IR (W/m^2) 13.7 13.4 13.6
Minimum Planetary IR (W/m^2) 13.7 13.4 13.6
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 15:51:54 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Jupiter (599) {source: jup365_merged}
Center body name: Sun (10) {source: jup365_merged}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.056033545576702E+00 Y = 4.971452162023883E+00 Z =-4.427806378454757E-02
VX=-7.476272400979211E-03 VY= 1.924466075080766E-03 VZ= 1.592575331437652E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.056028353720140E+00 Y = 4.971453498455673E+00 Z =-4.427795318902549E-02
VX=-7.476274498134918E-03 VY= 1.924457475706055E-03 VZ= 1.592575690535828E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,126 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: June 02, 2025 Mars 499 / 4
PHYSICAL DATA (updated 2025-Jun-02):
Vol. mean radius (km) = 3389.92+-0.04 Density (g/cm^3) = 3.933(5+-4)
Mass x10^23 (kg) = 6.4171 Flattening, f = 1/169.779
Volume (x10^10 km^3) = 16.318 Equatorial radius (km)= 3396.19
Sidereal rot. period = 24.622962 hr Sid. rot. rate, rad/s = 0.0000708822
Mean solar day (sol) = 88775.24415 s Polar gravity m/s^2 = 3.758
Core radius (km) = ~1700 Equ. gravity m/s^2 = 3.71
Geometric Albedo = 0.150
GM (km^3/s^2) = 42828.375662 Mass ratio (Sun/Mars) = 3098703.59
GM 1-sigma (km^3/s^2) = +- 0.00028 Mass of atmosphere, kg= ~ 2.5 x 10^16
Mean temperature (K) = 210 Atmos. pressure (bar) = 0.0056
Obliquity to orbit = 25.19 deg Max. angular diam. = 17.9"
Mean sidereal orb per = 1.88081578 y Visual mag. V(1,0) = -1.52
Mean sidereal orb per = 686.98 d Orbital speed, km/s = 24.13
Hill's sphere rad. Rp = 319.8 Escape speed, km/s = 5.027
Perihelion Aphelion Mean
Solar Constant (W/m^2) 717 493 589
Maximum Planetary IR (W/m^2) 470 315 390
Minimum Planetary IR (W/m^2) 30 30 30
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 15:51:53 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Mars (499) {source: mar099}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X =-5.216858665681381E-01 Y = 1.525234576802456E+00 Z = 4.475559803760917E-02
VX=-1.271183490340250E-02 VY=-3.338839586395265E-03 VZ= 2.417788175776839E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X =-5.216946942223875E-01 Y = 1.525232258137904E+00 Z = 4.475576593880412E-02
VX=-1.271180933472031E-02 VY=-3.338914323653169E-03 VZ= 2.417766240577524E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,124 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: April 12, 2021 Mercury 199 / 1
PHYSICAL DATA (updated 2024-Mar-04):
Vol. Mean Radius (km) = 2439.4+-0.1 Density (g cm^-3) = 5.427
Mass x10^23 (kg) = 3.302 Volume (x10^10 km^3) = 6.085
Sidereal rot. period = 58.6463 d Sid. rot. rate (rad/s)= 0.00000124001
Mean solar day = 175.9421 d Core radius (km) = ~1600
Geometric Albedo = 0.106 Surface emissivity = 0.77+-0.06
GM (km^3/s^2) = 22031.86855 Equatorial radius, Re = 2440.53 km
GM 1-sigma (km^3/s^2) = Mass ratio (Sun/plnt) = 6023682
Mom. of Inertia = 0.33 Equ. gravity m/s^2 = 3.701
Atmos. pressure (bar) = < 5x10^-15 Max. angular diam. = 11.0"
Mean Temperature (K) = 440 Visual mag. V(1,0) = -0.42
Obliquity to orbit[1] = 2.11' +/- 0.1' Hill's sphere rad. Rp = 94.4
Sidereal orb. per. = 0.2408467 y Mean Orbit vel. km/s = 47.362
Sidereal orb. per. = 87.969257 d Escape vel. km/s = 4.435
Perihelion Aphelion Mean
Solar Constant (W/m^2) 14462 6278 9126
Maximum Planetary IR (W/m^2) 12700 5500 8000
Minimum Planetary IR (W/m^2) 6 6 6
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:24 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Mercury (199) {source: DE441}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X =-3.873030085256687E-01 Y =-1.617241946342014E-01 Z = 2.230772540124238E-02
VX= 5.024430196457658E-03 VY=-2.474345331076241E-02 VZ=-2.482923861184285E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X =-3.872995189658449E-01 Y =-1.617413774324715E-01 Z = 2.230600112712438E-02
VX= 5.025502090388155E-03 VY=-2.474300570104969E-02 VZ=-2.482985597610005E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,117 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 26, 2022 Mimas / (Saturn) 601
http://ssd.jpl.nasa.gov/?sat_phys_par
http://ssd.jpl.nasa.gov/?sat_elem
SATELLITE PHYSICAL PROPERTIES:
Mean Radius (km) = 198.8 +- 1.5 Density (g/cm^3) = 1.152 +- 0.027
Mass (10^19 kg) = 3.75 Geometric Albedo = 0.6
GM (km^3/s^2) = 2.503489 V(1,0) = +3.3
SATELLITE ORBITAL DATA (mean elements referred to local Laplace plane):
Semi-major axis, a (km) = 185.54(10^3) Orbital period = 0.9424218 d
Eccentricity, e = 0.0196 Rotational period = Synchronous
Inclination, i (deg) = 1.572
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:43 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Mimas (601) {source: sat441l}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 9.462113317387443E+00 Y =-1.764120396234732E+00 Z =-3.462575454806998E-01
VX=-3.600569225193193E-03 VY= 1.195945377622506E-02 VZ=-3.321658418910402E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 9.462110805168413E+00 Y =-1.764112096667343E+00 Z =-3.462598478664664E-01
VX=-3.634605921905340E-03 VY= 1.194327556531391E-02 VZ=-3.309200303182580E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,115 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 29, 2025 Miranda / (Uranus) 705
SATELLITE PHYSICAL PROPERTIES:
Radius (km) = 240x234.2x232.9 Density (g cm^-3) = 1.18 +- 0.05
GM (km^3/s^2) = 4.3 +- 0.2 Geometric Albedo = 0.27
V(1,0) = +3.6
SATELLITE ORBITAL DATA (mean elements referred to equatorial plane & IAU pole)
Semi-major axis, a (km) = 129.8 (10^3) Orbital period = 1.413 d
Eccentricity, e = 0.0027 Rotational period = Synchronous
Inclination, i (deg) = 175.78
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:49 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Miranda (705) {source: ura183_merged}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.110338075481133E+01 Y = 1.609470886437212E+01 Z =-8.339848717695617E-02
VX= 2.787135511093017E-04 VY= 1.302160355796409E-03 VZ= 1.366210183434322E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.110338094954377E+01 Y = 1.609470976757570E+01 Z =-8.339754224366069E-02
VX= 2.821101872080506E-04 VY= 1.299067156991778E-03 VZ= 1.355195633050134E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,125 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: April 22, 2021 Neptune 899
PHYSICAL DATA (update 2021-May-03):
Mass x10^24 (kg) = 102.409 Density (g/cm^3) = 1.638
Equat. radius (1 bar) = 24766+-15 km Volume, 10^10 km^3 = 6254
Vol. mean radius (km) = 24624+-21 Polar radius (km) = 24342+-30
Geometric Albedo = 0.41 Flattening = 0.0171
Sid. rot. period (III)= 16.11+-0.01 hr Sid. rot. rate (rad/s) = 0.000108338
Mean solar day, h =~16.11 h
GM (km^3/s^2) = 6835099.97 GM 1-sigma (km^3/s^2) = +-10
Equ. grav, ge (m/s^2) = 11.15 Pol. grav, gp (m/s^2) = 11.41+-0.03
Visual magnitude V(1,0)= -6.87
Vis. mag. (opposition)= +7.84 Obliquity to orbit = 28.32 deg
Sidereal orbit period = 164.788501027 y Sidereal orbit period = 60189 d
Mean daily motion = 0.006020076dg/d Mean orbit velocity = 5.43 km/s
Atmos. temp. (1 bar) = 72+-2 K Escape speed (1 bar) = 23.5 km/s
Aroche(ice)/Rp = 2.98 Hill's sphere rad., Rp = 4700
Perihelion Aphelion Mean
Solar Constant (W/m^2) 1.54 1.49 1.51
Maximum Planetary IR (W/m^2) 0.52 0.52 0.52
Minimum Planetary IR (W/m^2) 0.52 0.52 0.52
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 15:51:58 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Neptune (899) {source: nep097_merged}
Center body name: Sun (10) {source: nep097_merged}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 2.987992735576156E+01 Y =-6.341879950443392E-01 Z =-6.754997950415415E-01
VX= 3.941595250081164E-05 VY= 3.160389775728832E-03 VZ=-6.636996572427530E-05
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 2.987992738313355E+01 Y =-6.341858003292957E-01 Z =-6.754998411317725E-01
VX= 3.941539715732043E-05 VY= 3.160389549672231E-03 VZ=-6.636990015457822E-05
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,115 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 29, 2025 Oberon / (Uranus) 704
SATELLITE PHYSICAL PROPERTIES:
Radius (km) = 761.4 +- 2.6 Density (g cm^-3) = 1.66 +- 0.05
GM (km^3/s^2) = 205.34 +- 5.8 Geometric Albedo = 0.24
V(1,0) = +1.23
SATELLITE ORBITAL DATA (mean elements referred to equatorial plane & IAU pole)
Semi-major axis, a (km) = 582.6 (10^3) Orbital period = 13.463 d
Eccentricity, e = 0.0008 Rotational period = Synchronous
Inclination, i (deg) = 179.90
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:45 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Oberon (704) {source: ura183_merged}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.110301190463219E+01 Y = 1.609515778477002E+01 Z =-8.040210462613612E-02
VX=-1.519780917379062E-03 VY= 1.720169702110850E-03 VZ= 3.926675849694972E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.110301084926093E+01 Y = 1.609515897929689E+01 Z =-8.040183213898029E-02
VX=-1.519688343927354E-03 VY= 1.720067705450287E-03 VZ= 3.920954185698925E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,115 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jun 02, 2025 Phobos / (Mars) 401
SATELLITE PHYSICAL PROPERTIES:
Radius (km) = 13.1 x11.1 x9.3 Density (g cm^-3) = 1.90 +- 0.08
Mass (10^20 kg ) = 1.08 (10^-4) Geometric Albedo = 0.06
(+- 0.1) V(1,0) = +11.8
SATELLITE ORBITAL DATA:
Semi-major axis, a (km) = 9.3772(10^3) Orbital period = 0.319 d
Eccentricity, e = 0.0151 Rotational period = Synchronous
Inclination, i (deg) = 1.082
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:27 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Phobos (401) {source: mar099}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X =-5.216607506283159E-01 Y = 1.525290094552813E+00 Z = 4.474552444674667E-02
VX=-1.371531677510715E-02 VY=-2.797359927923991E-03 VZ= 7.604209362929195E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X =-5.216702775783473E-01 Y = 1.525288146474805E+00 Z = 4.474605348954465E-02
VX=-1.372226672058481E-02 VY=-2.813122639161171E-03 VZ= 7.632054629505637E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,117 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 26, 2022 Rhea / (Saturn) 605
http://ssd.jpl.nasa.gov/?sat_phys_par
http://ssd.jpl.nasa.gov/?sat_elem
SATELLITE PHYSICAL PROPERTIES:
Mean Radius (km) = 764.5 +- 2 Density (g/cm^3) = 1.233 +- 0.010
Mass (10^19 kg) = 230.9 Geometric Albedo = 0.6
GM (km^3/s^2) = 153.94 +- 0.16 V(1,0) = +0.1
SATELLITE ORBITAL DATA (mean values referred to local Laplace plane):
Semi-major axis, a (km) = 527.07(10^3) Orbital period = 4.518 d
Eccentricity, e = 0.001 Rotational period = Synchronous
Inclination, i (deg) = 0.331
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:36 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Rhea (605) {source: sat441l}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 9.463441058546145E+00 Y =-1.766997606737125E+00 Z =-3.448366300385151E-01
VX= 4.307393238751094E-03 VY= 8.273257376182423E-03 VZ=-1.932435874857194E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 9.463444048680545E+00 Y =-1.766991860305545E+00 Z =-3.448379724938126E-01
VX= 4.304193275713166E-03 VY= 8.276465140546280E-03 VZ=-1.933835100794230E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,125 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: January 26, 2022 Saturn 699
PHYSICAL DATA:
Mass x10^26 (kg) = 5.6834 Density (g/cm^3) = 0.687+-.001
Equat. radius (1 bar) = 60268+-4 km Polar radius (km) = 54364+-10
Vol. Mean Radius (km) = 58232+-6 Flattening = 0.09796
Geometric Albedo = 0.47 Rocky core mass (Mc/M) = 0.1027
Sid. rot. period (III)= 10h 39m 22.4s Sid. rot. rate (rad/s) = 0.000163785
Mean solar day, hrs =~10.656
GM (km^3/s^2) = 37931206.234 GM 1-sigma (km^3/s^2) = +- 98
Equ. grav, ge (m/s^2) = 10.44 Pol. grav, gp (m/s^2) = 12.14+-0.01
Vis. magnitude V(1,0) = -8.88
Vis. mag. (opposition)= +0.67 Obliquity to orbit = 26.73 deg
Sidereal orbit period = 29.447498 yr Sidereal orbit period = 10755.698 d
Mean daily motion = 0.0334979 deg/d Mean orbit velocity = 9.68 km/s
Atmos. temp. (1 bar) = 134+-4 K Escape speed, km/s = 35.5
Aroche(ice)/Rp = 2.71 Hill's sphere rad. Rp = 1100
Perihelion Aphelion Mean
Solar Constant (W/m^2) 16.8 13.6 15.1
Maximum Planetary IR (W/m^2) 4.7 4.5 4.6
Minimum Planetary IR (W/m^2) 4.7 4.5 4.6
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 15:51:55 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Saturn (699) {source: sat441l}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 9.461067271500818E+00 Y =-1.764614720843175E+00 Z =-3.458764004169705E-01
VX= 7.093807804551229E-04 VY= 5.475097536527790E-03 VZ=-1.232345969963958E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 9.461067764125684E+00 Y =-1.764610918691946E+00 Z =-3.458764859965446E-01
VX= 7.093788338554797E-04 VY= 5.475098004312488E-03 VZ=-1.232345764512067E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,117 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 26, 2022 Tethys / (Saturn) 603
http://ssd.jpl.nasa.gov/?sat_phys_par
http://ssd.jpl.nasa.gov/?sat_elem
SATELLITE PHYSICAL PROPERTIES:
Mean Radius (km) = 536.3 +- 1.5 Density (g/cm^3) = 0.956+- 0.008
Mass (10^19 kg) = 61.76 +- 0.11 Geometric Albedo = 0.80
GM (km^3/s^2) = 41.21 +- 0.007 V(1,0) = +0.7
SATELLITE ORBITAL DATA (mean values with respect to local Laplace plane):
Semi-major axis, a (km)= 294.670(10^3) Orbital period = 1.888 d
Eccentricity, e = 0.0001 Rotational period = Synchronous
Inclination, i (deg) = 1.091
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:40 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Tethys (603) {source: sat441l}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 9.463028141754283E+00 Y =-1.764725184828637E+00 Z =-3.460263238634043E-01
VX= 8.124741088132637E-04 VY= 1.132977234261396E-02 VZ=-3.072248079372077E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 9.463028700733389E+00 Y =-1.764717316639481E+00 Z =-3.460284569666105E-01
VX= 7.973856311297915E-04 VY= 1.133060721568177E-02 VZ=-3.071086528742641E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,117 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 26, 2022 Titan / (Saturn) 606
http://ssd.jpl.nasa.gov/?sat_phys_par
http://ssd.jpl.nasa.gov/?sat_elem
SATELLITE PHYSICAL PROPERTIES:
Mean Radius (km) = 2575.5 +- 2.0 Density (g/cm^3) = 1.880 +- 0.004
Mass (10^19 kg) = 13455.3 Geometric Albedo = 0.2
GM (km^3/s^2) = 8978.14 +- 0.06 V(1,0) = -1.2
SATELLITE ORBITAL DATA:
Semi-major axis, a (km)= 1221.87 (10^3) Orbital period = 15.945421 d
Eccentricity, e = 0.0288 Rotational period =
Inclination, i (deg) = 0.28
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:35 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Titan (606) {source: sat441l}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 9.468440328490537E+00 Y =-1.762284834421733E+00 Z =-3.478122131916790E-01
VX=-4.611400435334967E-04 VY= 8.260265884102586E-03 VZ=-1.443082816825538E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 9.468440007956742E+00 Y =-1.762279098219692E+00 Z =-3.478132152545299E-01
VX=-4.619972666944876E-04 VY= 8.259995958078317E-03 VZ=-1.442858176376882E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,115 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 29, 2025 Titania / (Uranus) 703
SATELLITE PHYSICAL PROPERTIES:
Radius (km) = 788.9 +- 1.8 Density (g cm^-3) = 1.65 +- 0.03
GM (km^3/s^2) = 222.8 +- 4.1 Geometric Albedo = 0.27
V(1,0) = +1.02
SATELLITE ORBITAL DATA (mean elements referred to equatorial plane & IAU pole)
Semi-major axis, a (km) = 435.8 (10^3) Orbital period = 8.706 d
Eccentricity, e = 0.0022 Rotational period = Synchronous
Inclination, i (deg) = 179.90
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:44 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Titania (703) {source: ura183_merged}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.110510884778205E+01 Y = 1.609382177197045E+01 Z =-8.661833178512783E-02
VX=-5.032495225759578E-03 VY= 2.280002002691279E-03 VZ=-1.088327315015861E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.110510535280710E+01 Y = 1.609382335538846E+01 Z =-8.661908726294103E-02
VX=-5.033032537876168E-03 VY= 2.280241869921879E-03 VZ=-1.087448734649130E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,117 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Apr 22, 2021 Triton / (Neptune) 801
SATELLITE PHYSICAL PROPERTIES:
Mean radius (km) = 1352.6 +- 2.4 Mean dens (g cm^-3)= 2.065 +-0.011
GM (km^3/s^2) = 1428.495 +- 0.62 Geometric Albedo = 0.7
V(1,0) = -1.24
SATELLITE ORBITAL DATA (mean values wrt Laplace plane):
Semi-major axis, a (km) = 354800 Orbital period = 5.876994 d
Eccentricity, e = 0.000 Rotational period = Synchronous
Inclination, i (deg) = 157.3
Fit to all reported measurements through 2020 (Voyager 2, ground, HST)
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:50 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Triton (801) {source: nep097_merged}
Center body name: Sun (10) {source: nep097_merged}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 2.987802053077272E+01 Y =-6.355569689698364E-01 Z =-6.751627943073906E-01
VX=-6.787804924900204E-04 VY= 4.636375429506899E-03 VZ= 1.865945736548040E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 2.987802005992279E+01 Y =-6.355537488875286E-01 Z =-6.751614986047274E-01
VX=-6.772672129266950E-04 VY= 4.637461481841197E-03 VZ= 1.865677756098451E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,115 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 29, 2025 Umbriel / (Uranus) 702
SATELLITE PHYSICAL PROPERTIES:
Radius (km) = 584.7 +- 2.8 Density (g cm^-3) = 1.52 +- 0.04
GM (km^3/s^2) = 85.40 +- 1.9 Geometric Albedo = 0.18
V(1,0) = +2.10
SATELLITE ORBITAL DATA (mean elements referred to equatorial plane & IAU pole):
Semi-major axis, a (km) = 266.0 (10^3) Orbital period = 4.144 d
Eccentricity, e = 0.0050 Rotational period = Synchronous
Inclination, i (deg) = 179.64
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:48 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Umbriel (702) {source: ura183_merged}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.110253678329407E+01 Y = 1.609490555702174E+01 Z =-8.286998450094619E-02
VX=-1.219602563560983E-03 VY= 1.849034126664038E-03 VZ= 1.801100761916168E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.110253593696041E+01 Y = 1.609490684083643E+01 Z =-8.286873448230965E-02
VX=-1.217838766094139E-03 VY= 1.848352214682835E-03 VZ= 1.798952584612123E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,125 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: January 29, 2025 Uranus 799
PHYSICAL DATA:
Mass x10^24 (kg) = 86.813 Density (g/cm^3) = 1.271
Equat. radius (1 bar) = 25559+-4 km Polar radius (km) = 24973+-20
Vol. Mean Radius (km) = 25362+-12 Flattening = 0.02293
Geometric Albedo = 0.51
Sid. rot. period (III)= 17.24+-0.01 h Sid. rot. rate (rad/s) = -0.000101237
Mean solar day, h =~17.24 Rocky core mass (Mc/M) = 0.0012
GM (km^3/s^2) = 5793950.6103 GM 1-sigma (km^3/s^2) = +-4.3
Equ. grav, ge (m/s^2) = 8.87 Pol. grav, gp (m/s^2) = 9.19+-0.02
Visual magnitude V(1,0)= -7.11
Vis. mag. (opposition)= +5.52 Obliquity to orbit = 97.77 deg
Sidereal orbit period = 84.0120465 y Sidereal orbit period = 30685.4 d
Mean daily motion = 0.01176904 dg/d Mean orbit velocity = 6.8 km/s
Atmos. temp. (1 bar) = 76+-2 K Escape speed, km/s = 21.3
Aroche(ice)/Rp = 2.20 Hill's sphere rad., Rp = 2700
Perihelion Aphelion Mean
Solar Constant (W/m^2) 4.09 3.39 3.71
Maximum Planetary IR (W/m^2) 0.72 0.55 0.63
Minimum Planetary IR (W/m^2) 0.72 0.55 0.63
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 15:51:56 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Uranus (799) {source: ura183_merged}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.110362881512566E+01 Y = 1.609448391218202E+01 Z =-8.419833258524990E-02
VX=-3.273728238819980E-03 VY= 2.053528328895527E-03 VZ= 5.008589052969062E-05
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.110362654170318E+01 Y = 1.609448533824320E+01 Z =-8.419829780338954E-02
VX=-3.273728502372206E-03 VY= 2.053527864185684E-03 VZ= 5.008586714126605E-05
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,124 +0,0 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: April 12, 2021 Venus 299 / 2
PHYSICAL DATA (updated 2020-Oct-19):
Vol. Mean Radius (km) = 6051.84+-0.01 Density (g/cm^3) = 5.204
Mass x10^23 (kg) = 48.685 Volume (x10^10 km^3) = 92.843
Sidereal rot. period = 243.018484 d Sid. Rot. Rate (rad/s)= -0.00000029924
Mean solar day = 116.7490 d Equ. gravity m/s^2 = 8.870
Mom. of Inertia = 0.33 Core radius (km) = ~3200
Geometric Albedo = 0.65 Potential Love # k2 = ~0.25
GM (km^3/s^2) = 324858.592 Equatorial Radius, Re = 6051.893 km
GM 1-sigma (km^3/s^2) = +-0.006 Mass ratio (Sun/Venus)= 408523.72
Atmos. pressure (bar) = 90 Max. angular diam. = 60.2"
Mean Temperature (K) = 735 Visual mag. V(1,0) = -4.40
Obliquity to orbit = 177.3 deg Hill's sphere rad.,Rp = 167.1
Sidereal orb. per., y = 0.61519726 Orbit speed, km/s = 35.021
Sidereal orb. per., d = 224.70079922 Escape speed, km/s = 10.361
Perihelion Aphelion Mean
Solar Constant (W/m^2) 2759 2614 2650
Maximum Planetary IR (W/m^2) 153 153 153
Minimum Planetary IR (W/m^2) 153 153 153
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:26 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Venus (299) {source: DE441}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 4.534187654737982E-01 Y = 5.622160792960551E-01 Z =-1.844136025242647E-02
VX=-1.580627428004959E-02 VY= 1.261006264179427E-02 VZ= 1.085217883057661E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 4.534077888086579E-01 Y = 5.622248361776391E-01 Z =-1.844060662540785E-02
VX=-1.580652132279067E-02 VY= 1.260975631877725E-02 VZ= 1.085227930639264E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -1,3 +1,5 @@
curl -s "https://ssd.jpl.nasa.gov/api/horizons.api?format=text&COMMAND=%27301%27&CENTER=%27%40sun%27&EPHEM_TYPE=%27VECTORS%27&OUT_UNITS=%27AU-D%27&START_TIME=%272000-01-01%2012:00%27&STOP_TIME=%272000-01-01%2012:01%27&STEP_SIZE=%271%20m%27&VEC_TABLE=2&REF_PLANE=%27ECLIPTIC%27&REF_SYSTEM=%27J2000%27"
API VERSION: 1.2 API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API API SOURCE: NASA/JPL Horizons API
@ -27,14 +29,14 @@ API SOURCE: NASA/JPL Horizons API
******************************************************************************* *******************************************************************************
Ephemeris / API_USER Thu Aug 14 15:51:51 2025 Pasadena, USA / Horizons Ephemeris / API_USER Wed Aug 13 04:01:18 2025 Pasadena, USA / Horizons
******************************************************************************* *******************************************************************************
Target body name: Moon (301) {source: DE441} Target body name: Moon (301) {source: DE441}
Center body name: Sun (10) {source: DE441} Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER Center-site name: BODY CENTER
******************************************************************************* *******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB Start time : A.D. 2000-Jan-01 12:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB Stop time : A.D. 2000-Jan-01 12:01:00.0000 TDB
Step-size : 1 minutes Step-size : 1 minutes
******************************************************************************* *******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)} Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
@ -51,12 +53,12 @@ JDTDB
VX VY VZ VX VY VZ
******************************************************************************* *******************************************************************************
$$SOE $$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB 2451545.000000000 = A.D. 2000-Jan-01 12:00:00.0000 TDB
X =-1.776670337217189E-01 Y = 9.646511868801392E-01 Z =-2.560710414773878E-04 X =-1.790843809223965E-01 Y = 9.654035607264573E-01 Z = 2.383726922995396E-04
VX=-1.666610342674751E-02 VY=-2.935662211368250E-03 VZ= 2.214641479437884E-05 VX=-1.683595459141215E-02 VY=-3.580960720855671E-03 VZ=-6.540550604528720E-06
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB 2451545.000694444 = A.D. 2000-Jan-01 12:01:00.0000 TDB
X =-1.776786074043311E-01 Y = 9.646491481829632E-01 Z =-2.560556593596988E-04 X =-1.790960725225740E-01 Y = 9.654010738956424E-01 Z = 2.383681475637660E-04
VX=-1.666610249864482E-02 VY=-2.935785656373790E-03 VZ= 2.215408427478499E-05 VX=-1.683585392087164E-02 VY=-3.581112024431721E-03 VZ=-6.548288423082821E-06
$$EOE $$EOE
******************************************************************************* *******************************************************************************

View File

@ -1,30 +0,0 @@
Applied scale to Deimos: 3.572769492e-5, 2.336041507e-5, 2.748284533e-5
Applied scale to Umbriel: 3.375767119e-5, 3.375767119e-5, 3.375767119e-5
Applied scale to Phobos: 3.111071419e-5, 2.177749957e-5, 2.728170512e-5
Applied scale to Titania: 4.554716361e-5, 4.554716361e-5, 4.554716361e-5
Applied scale to Oberon: 4.395945143e-5, 4.395945143e-5, 4.395945143e-5
Applied scale to Mercury: 1.409040560e-4, 1.407730015e-4, 1.409040560e-4
Applied scale to Callisto: 1.391587430e-4, 1.391587430e-4, 1.391587430e-4
Applied scale to Venus: 3.494008561e-4, 3.494008561e-4, 3.494008561e-4
Applied scale to Uranus: 1.486925757e-3, 1.452834462e-3, 1.486925757e-3
Applied scale to Ariel: 3.354982618e-5, 3.335352449e-5, 3.336507143e-5
Applied scale to Europa: 9.021675214e-5, 9.003777086e-5, 9.008396592e-5
Applied scale to Pluto: 6.860653230e-5, 6.860653230e-5, 6.860653230e-5
Applied scale to Enceladus: 1.481480831e-5, 1.433560737e-5, 1.451458593e-5
Applied scale to Dione: 3.252791430e-5, 3.230852235e-5, 3.240667138e-5
Applied scale to Titan: 1.486763649e-4, 1.486371038e-4, 1.486549882e-4
Applied scale to Miranda: 1.387950124e-5, 1.344648808e-5, 1.352154413e-5
Applied scale to Neptune: 1.437890343e-3, 1.413329272e-3, 1.437890343e-3
Applied scale to Moon: 1.003505604e-4, 1.003505604e-4, 1.003505604e-4
Applied scale to Rhea: 4.416729644e-5, 4.401718616e-5, 4.405760046e-5
Applied scale to Sol: 4.016625881e-2, 4.016625881e-2, 4.016625881e-2
Applied scale to Iapetus: 4.305300899e-5, 4.111311500e-5, 4.305300899e-5
Applied scale to Jupiter: 4.216764122e-3, 3.943203948e-3, 4.216764122e-3
Applied scale to Ganymede: 1.519124053e-4, 1.519124053e-4, 1.519124053e-4
Applied scale to Earth: 3.686534474e-4, 3.674174368e-4, 3.686534474e-4
Applied scale to Saturn: 1.828302280e-3, 1.649197191e-3, 1.828302280e-3
Applied scale to Mimas: 3.022084638e-5, 2.771941035e-5, 2.860654604e-5
Applied scale to Triton: 7.809240196e-5, 7.809240196e-5, 7.809240196e-5
Applied scale to Mars: 1.964640105e-4, 1.953076135e-4, 1.964640105e-4
Applied scale to Tethys: 3.129428660e-5, 3.059098162e-5, 3.070722960e-5
Applied scale to Io: 1.056204637e-4, 1.048294944e-4, 1.050431092e-4

View File

@ -1,3 +1,5 @@
curl -s "https://ssd.jpl.nasa.gov/api/horizons.api?format=text&COMMAND=%27%40sun%27&CENTER=%27%40sun%27&EPHEM_TYPE=%27VECTORS%27&OUT_UNITS=%27AU-D%27&START_TIME=%272000-01-01%2012:00%27&STOP_TIME=%272000-01-01%2012:01%27&STEP_SIZE=%271%20m%27&VEC_TABLE=2&REF_PLANE=%27ECLIPTIC%27&REF_SYSTEM=%27J2000%27"
API VERSION: 1.2 API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API API SOURCE: NASA/JPL Horizons API
@ -26,14 +28,14 @@ API SOURCE: NASA/JPL Horizons API
******************************************************************************* *******************************************************************************
Ephemeris / API_USER Thu Aug 14 15:51:49 2025 Pasadena, USA / Horizons Ephemeris / API_USER Wed Aug 13 04:05:18 2025 Pasadena, USA / Horizons
******************************************************************************* *******************************************************************************
Target body name: Sun (10) {source: DE441} Target body name: Sun (10) {source: DE441}
Center body name: Sun (10) {source: DE441} Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER Center-site name: BODY CENTER
******************************************************************************* *******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB Start time : A.D. 2000-Jan-01 12:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB Stop time : A.D. 2000-Jan-01 12:01:00.0000 TDB
Step-size : 1 minutes Step-size : 1 minutes
******************************************************************************* *******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)} Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
@ -50,10 +52,10 @@ JDTDB
VX VY VZ VX VY VZ
******************************************************************************* *******************************************************************************
$$SOE $$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB 2451545.000000000 = A.D. 2000-Jan-01 12:00:00.0000 TDB
X = 0.000000000000000E+00 Y = 0.000000000000000E+00 Z = 0.000000000000000E+00 X = 0.000000000000000E+00 Y = 0.000000000000000E+00 Z = 0.000000000000000E+00
VX= 0.000000000000000E+00 VY= 0.000000000000000E+00 VZ= 0.000000000000000E+00 VX= 0.000000000000000E+00 VY= 0.000000000000000E+00 VZ= 0.000000000000000E+00
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB 2451545.000694444 = A.D. 2000-Jan-01 12:01:00.0000 TDB
X = 0.000000000000000E+00 Y = 0.000000000000000E+00 Z = 0.000000000000000E+00 X = 0.000000000000000E+00 Y = 0.000000000000000E+00 Z = 0.000000000000000E+00
VX= 0.000000000000000E+00 VY= 0.000000000000000E+00 VZ= 0.000000000000000E+00 VX= 0.000000000000000E+00 VY= 0.000000000000000E+00 VZ= 0.000000000000000E+00
$$EOE $$EOE

View File

@ -1,154 +0,0 @@
//! This example demonstrates what floating point error in rendering looks like. You can press
//! space bar to smoothly switch between enabling and disabling the floating origin.
//!
//! Instead of disabling the plugin outright, this example simply moves the floating origin
//! independently of the camera, which is equivalent to what would happen when moving far from the
//! origin when not using this plugin.
use bevy::prelude::*;
use big_space::prelude::*;
fn main() {
App::new()
.add_plugins((
DefaultPlugins.build().disable::<TransformPlugin>(),
BigSpaceDefaultPlugins,
))
.add_systems(Startup, (setup_scene, setup_ui))
.add_systems(Update, (rotator_system, toggle_plugin))
.run();
}
/// You can put things really, really far away from the origin. The distance we use here is actually
/// quite small, because we want the mesh to still be visible when the floating origin is far from
/// the camera. If you go much further than this, the mesh will simply disappear in a *POOF* of
/// floating point error when we disable this plugin.
///
/// This plugin can function much further from the origin without any issues. Try setting this to:
/// `10_000_000_000_000_000` with the default i64 feature, or
/// `10_000_000_000_000_000_000_000_000_000_000_000_000` with the i128 feature.
const DISTANCE: GridPrecision = 2_000_000;
/// Move the floating origin back to the "true" origin when the user presses the spacebar to emulate
/// disabling the plugin. Normally you would make your active camera the floating origin to avoid
/// this issue.
fn toggle_plugin(
input: Res<ButtonInput<KeyCode>>,
grids: Grids,
mut text: Query<&mut Text>,
mut disabled: Local<bool>,
mut floating_origin: Query<(Entity, &mut CellCoord), With<FloatingOrigin>>,
) -> Result {
if input.just_pressed(KeyCode::Space) {
*disabled = !*disabled;
}
let this_grid = grids
.parent_grid(floating_origin.single().unwrap().0)
.unwrap();
let mut origin_cell = floating_origin.single_mut()?.1;
let index_max = DISTANCE / this_grid.cell_edge_length() as GridPrecision;
let increment = index_max / 100;
let msg = if *disabled {
if origin_cell.x > 0 {
origin_cell.x = 0.max(origin_cell.x - increment);
origin_cell.y = 0.max(origin_cell.y - increment);
origin_cell.z = 0.max(origin_cell.z - increment);
"Disabling..."
} else {
"Floating Origin Disabled"
}
} else if origin_cell.x < index_max {
origin_cell.x = index_max.min(origin_cell.x.saturating_add(increment));
origin_cell.y = index_max.min(origin_cell.y.saturating_add(increment));
origin_cell.z = index_max.min(origin_cell.z.saturating_add(increment));
"Enabling..."
} else {
"Floating Origin Enabled"
};
let dist =
index_max.saturating_sub(origin_cell.x) * this_grid.cell_edge_length() as GridPrecision;
let thousands = |num: GridPrecision| {
num.to_string()
.as_bytes()
.rchunks(3)
.rev()
.map(core::str::from_utf8)
.collect::<Result<Vec<&str>, _>>()
.unwrap()
.join(",") // separator
};
text.single_mut()?.0 = format!(
"Press Spacebar to toggle: {msg}\nCamera distance to floating origin: {}\nMesh distance from origin: {}",
thousands(dist),
thousands(DISTANCE)
);
Ok(())
}
#[derive(Component)]
struct Rotator;
fn rotator_system(time: Res<Time>, mut query: Query<&mut Transform, With<Rotator>>) {
for mut transform in &mut query {
transform.rotate_y(time.delta_secs());
}
}
fn setup_ui(mut commands: Commands) {
commands.spawn((
Text::default(),
TextFont {
font_size: 30.0,
..default()
},
Node {
position_type: PositionType::Absolute,
top: Val::Px(12.0),
left: Val::Px(12.0),
..default()
},
));
}
fn setup_scene(mut commands: Commands, asset_server: Res<AssetServer>) {
commands.spawn_big_space_default(|root| {
let d = DISTANCE / root.grid().cell_edge_length() as GridPrecision;
let distant_grid_cell = CellCoord::new(d, d, d);
// Normally, we would put the floating origin on the camera. However in this example, we
// want to show what happens as the camera is far from the origin, to emulate what
// happens when this plugin isn't used.
root.spawn_spatial((distant_grid_cell, FloatingOrigin));
root.spawn_spatial((
SceneRoot(asset_server.load("models/low_poly_spaceship/scene.gltf#Scene0")),
Transform::from_scale(Vec3::splat(0.2)),
distant_grid_cell,
Rotator,
))
.with_child((
SceneRoot(asset_server.load("models/low_poly_spaceship/scene.gltf#Scene0")),
Transform::from_xyz(0.0, 0.0, 20.0),
));
// light
root.spawn_spatial((
DirectionalLight::default(),
Transform::from_xyz(4.0, -10.0, -4.0),
distant_grid_cell,
));
// camera
root.spawn_spatial((
Camera3d::default(),
Transform::from_xyz(8.0, 8.0, 0.0).looking_at(Vec3::ZERO, Vec3::Y),
distant_grid_cell,
));
});
}

View File

@ -1,87 +0,0 @@
//! Demonstrates how to have the camera follow a target object
use bevy::prelude::*;
use bevy_panorbit_camera::{PanOrbitCamera, PanOrbitCameraPlugin};
use std::f32::consts::TAU;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_plugins(PanOrbitCameraPlugin)
.add_systems(Startup, setup)
.add_systems(Update, (animate_cube, cam_follow).chain())
.run();
}
#[derive(Component)]
struct Cube;
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// Ground
commands.spawn((
Mesh3d(meshes.add(Plane3d::default().mesh().size(0.5, 0.5))),
MeshMaterial3d(materials.add(Color::srgb(0.3, 0.5, 0.3))),
));
// Cube
commands
.spawn((
Mesh3d(meshes.add(Cuboid::new(0.1, 0.1, 0.1))),
MeshMaterial3d(materials.add(Color::srgb(0.8, 0.7, 0.6))),
Transform::from_xyz(0.0, 0.5, 0.0),
))
.insert(Cube);
// Light
commands.spawn((
PointLight {
shadows_enabled: true,
..default()
},
Transform::from_xyz(4.0, 8.0, 4.0),
));
// Camera
commands.spawn((
Transform::from_translation(Vec3::new(0.0, 0.15, 0.5)),
PanOrbitCamera {
// Panning the camera changes the focus, and so you most likely want to disable
// panning when setting the focus manually
pan_sensitivity: 0.0,
// If you want to fully control the camera's focus, set smoothness to 0 so it
// immediately snaps to that location. If you want the 'follow' to be smoothed,
// leave this at default or set it to something between 0 and 1.
pan_smoothness: 0.0,
..default()
},
));
}
/// Move the cube in a circle around the Y axis
fn animate_cube(
time: Res<Time>,
mut cube_q: Query<&mut Transform, With<Cube>>,
mut angle: Local<f32>,
) {
if let Ok(mut cube_tfm) = cube_q.single_mut() {
// Rotate 20 degrees a second, wrapping around to 0 after a full rotation
*angle += 20f32.to_radians() * time.delta_secs() % TAU;
// Convert angle to position
let pos = Vec3::new(angle.sin() * 0.15, 0.05, angle.cos() * 0.15);
cube_tfm.translation = pos;
}
}
/// Set the camera's focus to the cube's position
fn cam_follow(mut pan_orbit_q: Query<&mut PanOrbitCamera>, cube_q: Query<&Transform, With<Cube>>) {
if let Ok(mut pan_orbit) = pan_orbit_q.single_mut() {
if let Ok(cube_tfm) = cube_q.single() {
pan_orbit.target_focus = cube_tfm.translation;
// Whenever changing properties manually like this, it's necessary to force
// PanOrbitCamera to update this frame (by default it only updates when there are
// input events).
pan_orbit.force_update = true;
}
}
}

View File

@ -1,98 +0,0 @@
use bevy::{
core_pipeline::{bloom::Bloom, tonemapping::Tonemapping},
prelude::*,
window::WindowMode,
};
use bevy_inspector_egui::{bevy_egui::EguiPlugin, quick::WorldInspectorPlugin};
use bevy_panorbit_camera::{PanOrbitCamera, PanOrbitCameraPlugin};
use solar_sim::InitialState;
fn camera(mut commands: Commands) {
commands.spawn((
PanOrbitCamera {
focus: Vec3::new(0., 0.0, 0.0),
zoom_lower_limit: SCALE,
radius: Some(SCALE * 10.),
..default()
},
Camera {
hdr: true,
clear_color: ClearColorConfig::Custom(Color::BLACK),
..default()
},
Projection::Perspective(PerspectiveProjection {
near: 1e-9, // Very close near plane for extreme zooming
..default()
}),
Tonemapping::TonyMcMapface,
Bloom::NATURAL,
));
commands.spawn(DirectionalLight {
shadows_enabled: true,
illuminance: 50_000.0,
..default()
});
}
const SCALE: f32 = 1.;
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
// Load initial state from RON file
let initial_state_content = match std::fs::read_to_string("assets/initial_state.ron") {
Ok(content) => content,
Err(err) => {
error!("Failed to read initial_state.ron: {}", err);
return;
}
};
let initial_state: InitialState = match ron::from_str(&initial_state_content) {
Ok(state) => state,
Err(err) => {
error!("Failed to parse initial_state.ron: {}", err);
return;
}
};
initial_state
.bodies
.iter()
.enumerate()
.for_each(|(i, body)| {
commands
.spawn(Transform::from_translation(Vec3::new(
(i) as f32 * SCALE * 10 as f32,
0.,
0.,
)))
.with_children(|parent| {
let scene = asset_server.load(format!("models/{}#Scene0", body.model.path));
parent.spawn((
SceneRoot(scene),
Transform::from_scale(Vec3::new(
body.model.scale.0,
body.model.scale.1,
body.model.scale.2,
)),
));
});
});
}
fn main() {
App::new()
.add_plugins(DefaultPlugins.set(WindowPlugin {
primary_window: Some(Window {
title: "Solar Sim".to_string(),
mode: WindowMode::BorderlessFullscreen(MonitorSelection::Primary),
..default()
}),
..default()
}))
.add_plugins(EguiPlugin::default())
.add_plugins(WorldInspectorPlugin::new())
.add_plugins(PanOrbitCameraPlugin)
.add_systems(Startup, (camera, setup))
.run();
}

File diff suppressed because it is too large Load Diff

View File

@ -1,23 +0,0 @@
use serde::Deserialize;
// Data structures for deserializing initial_state.ron
#[derive(Deserialize)]
pub struct InitialState {
pub bodies: Vec<CelestialBodyData>,
}
#[derive(Deserialize)]
pub struct CelestialBodyData {
pub name: String,
pub mass: f64, // kg
pub radius: f64, // km
pub position: (f64, f64, f64), // AU
pub velocity: (f64, f64, f64), // AU/day
pub model: ModelInfo,
}
#[derive(Deserialize)]
pub struct ModelInfo {
pub path: String,
pub scale: (f32, f32, f32),
}

View File

@ -2,50 +2,46 @@ use bevy::{
core_pipeline::{bloom::Bloom, tonemapping::Tonemapping}, core_pipeline::{bloom::Bloom, tonemapping::Tonemapping},
math::DVec3, math::DVec3,
prelude::*, prelude::*,
window::{WindowMode, WindowResolution}, window::WindowMode,
}; };
use bevy_inspector_egui::{bevy_egui::EguiPlugin, quick::WorldInspectorPlugin}; use bevy_inspector_egui::{bevy_egui::EguiPlugin, quick::WorldInspectorPlugin};
use bevy_panorbit_camera::{PanOrbitCamera, PanOrbitCameraPlugin}; use bevy_panorbit_camera::{PanOrbitCamera, PanOrbitCameraPlugin};
use iyes_perf_ui::{PerfUiPlugin, prelude::*};
use solar_sim::InitialState;
mod jpl_horizon;
// Scaling factor to convert AU to game units // Scaling factor to convert AU to game units
// Neptune is approximately 30.1 astronomical units (AU) from the Sun // Neptune is approximately 30.1 astronomical units (AU) from the Sun
// Point light effective range is about 10 game units, so 10 game units = ~30 AU // Point light effective range is about 10 game units, so 10 game units = ~30 AU
const AU_TO_GAME_UNITS: f64 = 1. / 3.; const AU_TO_GAME_UNITS: f64 = 0.3;
// Unit wrapper types - all distances in AU // Unit wrapper types - all distances in AU
#[derive(Clone, Copy, Debug, PartialEq, Reflect)] #[derive(Clone, Copy, Debug, PartialEq)]
pub struct DistanceAu(pub f64); pub struct DistanceAu(pub f64);
#[derive(Clone, Copy, Debug, PartialEq, Reflect)] #[derive(Clone, Copy, Debug, PartialEq)]
pub struct PositionAu(pub DVec3); pub struct PositionAu(pub DVec3);
#[derive(Clone, Copy, Debug, PartialEq, Reflect)] #[derive(Clone, Copy, Debug, PartialEq)]
pub struct VelocityAuPerDay(pub DVec3); pub struct VelocityAuPerDay(pub DVec3);
#[derive(Clone, Copy, Debug, PartialEq, Reflect)] #[derive(Clone, Copy, Debug, PartialEq)]
pub struct MassSolarMass(pub f64); pub struct MassKg(pub f64);
#[derive(Clone, Debug, PartialEq, Reflect)] #[derive(Clone, Debug, PartialEq)]
pub struct ObjectName(pub String); pub struct ObjectName(pub String);
// Component wrappers // Component wrappers
#[derive(Component, Reflect)] #[derive(Component)]
struct Position(PositionAu); struct Position(PositionAu);
#[derive(Component, Reflect)] #[derive(Component)]
struct Velocity(VelocityAuPerDay); struct Velocity(VelocityAuPerDay);
#[derive(Component, Reflect)] #[derive(Component)]
struct Mass(MassSolarMass); struct Mass(MassKg);
#[derive(Component, Reflect)] #[derive(Component)]
struct Radius(DistanceAu); struct Radius(DistanceAu);
#[derive(Component, Reflect)] #[derive(Component)]
struct Name(ObjectName); struct Name(ObjectName);
#[derive(Bundle)] #[derive(Bundle)]
@ -60,75 +56,92 @@ struct ObjectBundle {
#[derive(Component)] #[derive(Component)]
struct Star; struct Star;
#[derive(Component)]
struct EmissiveEnhanced;
#[derive(Component)]
struct NeedsEmissiveEnhancement;
#[derive(Component)]
struct EmissiveEnhancementAttempts {
attempts: u32,
max_attempts: u32,
}
#[derive(Component)]
struct Earth;
// Component for UI name labels // Component for UI name labels
#[derive(Component)] #[derive(Component)]
struct ObjectLabel { struct ObjectLabel {
target_entity: Entity, target_entity: Entity,
} }
// Component to control label visibility
#[derive(Component)]
struct LabelVisible(bool);
// Component to mark objects that can be focused on with proper zoom levels // Component to mark objects that can be focused on with proper zoom levels
#[derive(Component)] #[derive(Component)]
struct Trackable {} struct Trackable {}
#[derive(Resource)]
struct Origin {
target: Option<Entity>,
}
pub struct SolarRenderingPlugin; pub struct SolarRenderingPlugin;
impl Plugin for SolarRenderingPlugin { impl Plugin for SolarRenderingPlugin {
fn build(&self, app: &mut App) { fn build(&self, app: &mut App) {
app.insert_resource(Origin { target: None }) app.add_systems(Startup, (setup_rendering, setup_ui))
.add_systems(Startup, (setup_rendering, setup_ui))
.add_systems( .add_systems(
FixedPostUpdate, FixedPostUpdate,
( (
sync_radius_to_mesh,
sync_position_to_transform, sync_position_to_transform,
sync_name_labels, sync_name_labels,
manage_label_overlaps
.after(sync_position_to_transform)
.after(sync_name_labels),
), ),
) )
.add_systems( .add_systems(Update, (update_label_positions, handle_label_clicks));
PostUpdate, }
(update_label_positions.after(manage_label_overlaps),), }
)
.add_systems(Update, (handle_label_clicks, handle_speed_controls)); fn sync_radius_to_mesh(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
query: Query<(Entity, &Radius, Option<&Star>, Option<&Mesh3d>), Changed<Radius>>,
) {
for (entity, radius, star, existing_mesh) in query.iter() {
// Convert AU to game units for rendering
let render_radius = radius.0.0 * AU_TO_GAME_UNITS;
println!("render_radius: {:?}", render_radius);
// Create or update sphere mesh
let sphere_mesh = meshes.add(Sphere::new(render_radius as f32));
let material = materials.add(if star.is_none() {
StandardMaterial {
base_color: Color::WHITE,
..default()
}
} else {
StandardMaterial {
base_color: Color::WHITE, // Sun-like color for stars
emissive: LinearRgba::rgb(200.0, 200.0, 200.0),
..default()
}
});
if existing_mesh.is_none() {
// Add mesh and material components if they don't exist
commands
.entity(entity)
.insert((Mesh3d(sphere_mesh), MeshMaterial3d(material)));
} else {
// Update existing mesh
commands.entity(entity).insert(Mesh3d(sphere_mesh));
}
} }
} }
fn sync_position_to_transform( fn sync_position_to_transform(
mut query: Query<(Entity, &Position, &mut Transform)>, mut commands: Commands,
origin: Res<Origin>, mut query: Query<(Entity, &Position, Option<&mut Transform>), Changed<Position>>,
) { ) {
let offset = origin.target.map_or(DVec3::ZERO, |target| { for (entity, position, transform) in query.iter_mut() {
query // Convert AU to game units for rendering
.get(target) let scaled_position = position.0.0 * AU_TO_GAME_UNITS;
.map_or(DVec3::ZERO, |(_, position, _)| position.0.0) println!("scaled_position: {:?}", scaled_position);
}); match transform {
for (_, position, mut transform) in query.iter_mut() { Some(mut t) => {
transform.translation = ((position.0.0 - offset) * AU_TO_GAME_UNITS).as_vec3(); // Update existing transform
t.translation = scaled_position.as_vec3();
}
None => {
// Insert a new Transform if it doesn't exist
commands
.entity(entity)
.insert(Transform::from_translation(scaled_position.as_vec3()));
}
};
} }
} }
@ -136,26 +149,32 @@ fn setup_rendering(mut commands: Commands) {
// Spawn camera with pan/orbit/zoom controls // Spawn camera with pan/orbit/zoom controls
// Place it at a good distance to view the solar system // Place it at a good distance to view the solar system
commands.spawn(( commands.spawn((
PanOrbitCamera { Camera3d::default(),
zoom_lower_limit: 1e-6,
..default()
},
Camera { Camera {
hdr: true, hdr: true,
clear_color: ClearColorConfig::Custom(Color::BLACK), clear_color: ClearColorConfig::Custom(Color::BLACK),
..default() ..default()
}, },
Projection::Perspective(PerspectiveProjection { Projection::Perspective(PerspectiveProjection {
near: 1e-8, // Very close near plane for extreme zooming near: 1e-9, // Very close near plane for extreme zooming
far: 1e-2,
..default() ..default()
}), }),
Tonemapping::TonyMcMapface, Tonemapping::TonyMcMapface,
Transform::from_translation(Vec3::new(0., 0., 10.0)), Transform::from_translation(Vec3::new(0., 0., 10.0)),
Bloom::NATURAL, Bloom::NATURAL,
PanOrbitCamera {
pan_sensitivity: 0.0, // Disable panning by setting sensitivity to 0
focus: Vec3::ZERO,
zoom_lower_limit: 1e-8,
..default()
},
)); ));
commands.spawn(PerfUiAllEntries::default()); commands.spawn(PointLight {
color: Color::WHITE,
shadows_enabled: true,
..default()
});
} }
fn setup_ui(mut commands: Commands) { fn setup_ui(mut commands: Commands) {
@ -180,7 +199,7 @@ fn sync_name_labels(
.any(|label| label.target_entity == entity); .any(|label| label.target_entity == entity);
if !has_label { if !has_label {
// Create new label with scaled font size // Create new label
commands.spawn(( commands.spawn((
Text::new(name.0.0.clone()), Text::new(name.0.0.clone()),
TextColor(Color::WHITE), TextColor(Color::WHITE),
@ -199,115 +218,40 @@ fn sync_name_labels(
ObjectLabel { ObjectLabel {
target_entity: entity, target_entity: entity,
}, },
LabelVisible(true), // Start visible by default
)); ));
} }
} }
} }
fn manage_label_overlaps(
mut label_query: Query<(&ObjectLabel, &mut LabelVisible)>,
objects_query: Query<(&GlobalTransform, &Name, &Radius)>,
camera_query: Query<(&Camera, &GlobalTransform)>,
) {
let Ok((camera, camera_transform)) = camera_query.single() else {
return;
};
// Collect all on-screen objects with their screen positions and radii
let mut visible_objects: Vec<(Entity, Vec2, f64, String)> = Vec::new();
for (label, _) in label_query.iter() {
if let Ok((global_transform, name, radius)) = objects_query.get(label.target_entity) {
let world_pos = global_transform.translation();
if let Ok(screen_pos) = camera.world_to_viewport(camera_transform, world_pos) {
visible_objects.push((
label.target_entity,
screen_pos,
radius.0.0, // radius in AU
name.0.0.clone(),
));
}
}
}
// Reset all labels to visible first
for (_, mut visible) in label_query.iter_mut() {
visible.0 = true;
}
// Check for overlaps and hide smaller objects
const OVERLAP_THRESHOLD: f32 = 50.0; // pixels
for i in 0..visible_objects.len() {
for j in (i + 1)..visible_objects.len() {
let (entity_a, pos_a, radius_a, name_a) = &visible_objects[i];
let (entity_b, pos_b, radius_b, name_b) = &visible_objects[j];
let distance = pos_a.distance(*pos_b);
if distance < OVERLAP_THRESHOLD {
// Determine which label to hide based on radius (larger wins)
let entity_to_hide = if radius_a > radius_b {
*entity_b
} else if radius_b > radius_a {
*entity_a
} else {
// If radii are equal, prefer alphabetically first name
if name_a < name_b {
*entity_b
} else {
*entity_a
}
};
// Hide the smaller object's label
for (label, mut visible) in label_query.iter_mut() {
if label.target_entity == entity_to_hide {
visible.0 = false;
break;
}
}
}
}
}
}
fn update_label_positions( fn update_label_positions(
mut label_query: Query<(&mut Node, &ObjectLabel, &mut Text, &LabelVisible), With<ObjectLabel>>, mut label_query: Query<(&mut Node, &ObjectLabel, &mut Text), With<ObjectLabel>>,
objects_query: Query<(&GlobalTransform, &Name, &Radius)>, objects_query: Query<(&Position, &Name, &Radius)>,
camera_query: Query<(&Camera, &GlobalTransform)>, camera_query: Query<(&Camera, &GlobalTransform)>,
) { ) {
let Ok((camera, camera_transform)) = camera_query.single() else { let Ok((camera, camera_transform)) = camera_query.single() else {
return; return;
}; };
for (mut node, label, mut text, visible) in label_query.iter_mut() { for (mut node, label, mut text) in label_query.iter_mut() {
if !visible.0 { if let Ok((position, name, _radius)) = objects_query.get(label.target_entity) {
// Label is marked as invisible due to overlap, hide it let world_pos = position.0.0 * AU_TO_GAME_UNITS;
node.display = Display::None;
continue;
}
if let Ok((global_transform, name, _radius)) = objects_query.get(label.target_entity) {
let world_pos = global_transform.translation();
if let Ok(screen_pos) = camera.world_to_viewport(camera_transform, world_pos) {
// Apply scale factor to label offset to maintain relative positioning
let scaled_offset = 10.0;
if let Ok(screen_pos) = camera.world_to_viewport(camera_transform, world_pos.as_vec3())
{
// Position the label on screen, offset slightly to avoid overlapping the object // Position the label on screen, offset slightly to avoid overlapping the object
node.left = Val::Px(screen_pos.x + scaled_offset); node.left = Val::Px(screen_pos.x + 10.0);
node.top = Val::Px(screen_pos.y - scaled_offset); node.top = Val::Px(screen_pos.y - 10.0);
node.display = Display::Flex; // Make sure it's visible
// Update text in case name changed // Update text in case name changed
text.0 = name.0.0.clone(); text.0 = name.0.0.clone();
} else { } else {
// Object is off-screen, hide label // Object is off-screen, hide label by moving it off-screen
node.display = Display::None; node.left = Val::Px(-1000.0);
node.top = Val::Px(-1000.0);
} }
} else { } else {
// Target entity no longer exists, hide label // Target entity no longer exists, remove label
node.display = Display::None; // Note: In a more complex system, you might want to handle this in a separate cleanup system
} }
} }
} }
@ -317,245 +261,151 @@ fn handle_label_clicks(
(&Interaction, &ObjectLabel), (&Interaction, &ObjectLabel),
(Changed<Interaction>, With<ObjectLabel>), (Changed<Interaction>, With<ObjectLabel>),
>, >,
trackable_objects: Query<(&Transform, &Trackable, &Radius)>, trackable_objects: Query<(&Position, &Trackable, &Radius)>,
mut camera: Single<&mut PanOrbitCamera>, mut camera_query: Query<&mut PanOrbitCamera>,
mut origin: ResMut<Origin>,
) { ) {
for (interaction, label) in interaction_query.iter() { for (interaction, label) in interaction_query.iter() {
if *interaction == Interaction::Pressed { if *interaction == Interaction::Pressed {
if let Ok((_target_transform, _trackable, radius)) = if let Ok((position, _trackable, radius)) = trackable_objects.get(label.target_entity) {
trackable_objects.get(label.target_entity) if let Ok(mut pan_orbit) = camera_query.single_mut() {
{ // Focus camera on the clicked object using target values for smooth transitions
// Calculate appropriate distance based on entity radius (with some padding) pan_orbit.target_focus = (position.0.0 * AU_TO_GAME_UNITS).as_vec3();
let entity_radius = (radius.0.0 * AU_TO_GAME_UNITS) as f32; pan_orbit.target_radius = (radius.0.0 * AU_TO_GAME_UNITS) as f32 * 4.;
camera.target_radius = entity_radius * 10.;
camera.zoom_lower_limit = entity_radius * 4.; // Also set the immediate values to ensure it takes effect
camera.target_focus = Vec3::ZERO; // pan_orbit.focus = position.0.0.as_vec3();
origin.target = Some(label.target_entity); // pan_orbit.radius = Some(trackable.zoom_distance);
}
} }
} }
} }
} }
fn handle_speed_controls( fn setup_solar_system(mut commands: Commands) {
keyboard_input: Res<ButtonInput<KeyCode>>, // Sun - From NASA JPL Horizons data (J2000.0 epoch)
mut time: ResMut<Time<Virtual>>, // Physical properties: Mass = 1988410 x 10^24 kg, Radius = 695700 km = 0.00465 AU
) { commands.spawn((
// Pause/Unpause with SPACE
if keyboard_input.just_pressed(KeyCode::Space) {
if time.is_paused() {
time.unpause();
println!("Simulation RESUMED (Speed: {}x)", time.relative_speed());
} else {
time.pause();
println!("Simulation PAUSED");
}
}
// Speed up with + or = key (double current speed, max 32x)
if keyboard_input.just_pressed(KeyCode::Equal)
|| keyboard_input.just_pressed(KeyCode::NumpadAdd)
{
if !time.is_paused() {
let current_speed = time.relative_speed();
let new_speed = (current_speed * 2.0).min(32.0);
time.set_relative_speed(new_speed);
println!("Speed: {}x", new_speed);
}
}
// Speed down with - key (halve current speed, min 1.0x)
if keyboard_input.just_pressed(KeyCode::Minus)
|| keyboard_input.just_pressed(KeyCode::NumpadSubtract)
{
if !time.is_paused() {
let current_speed = time.relative_speed();
let new_speed = (current_speed * 0.5).max(1.0);
time.set_relative_speed(new_speed);
println!("Speed: {}x", new_speed);
}
}
// Reset to normal speed with R
if keyboard_input.just_pressed(KeyCode::KeyR) {
time.set_relative_speed(1.0);
time.unpause();
println!("Speed reset to 1x");
}
}
const AU_TO_KM: f64 = 149597870.691;
fn setup_solar_system(mut commands: Commands, asset_server: Res<AssetServer>) {
// Load initial state from RON file
let initial_state_content = match std::fs::read_to_string("assets/initial_state.ron") {
Ok(content) => content,
Err(err) => {
error!("Failed to read initial_state.ron: {}", err);
return;
}
};
let initial_state: InitialState = match ron::from_str(&initial_state_content) {
Ok(state) => state,
Err(err) => {
error!("Failed to parse initial_state.ron: {}", err);
return;
}
};
for body_data in initial_state.bodies {
// Convert radius from km to AU
let radius_au = body_data.radius / AU_TO_KM; // km to AU conversion
// Convert mass from kg to solar masses
let mass_solar = body_data.mass / SOLAR_MASS_KG;
// Create base bundle
let mut entity_commands = commands.spawn((
ObjectBundle { ObjectBundle {
name: Name(ObjectName(body_data.name.clone())), name: Name(ObjectName("Sun".to_string())),
position: Position(PositionAu(DVec3::new(0.0, 0.0, 0.0))), // At barycenter
velocity: Velocity(VelocityAuPerDay(DVec3::new(0.0, 0.0, 0.0))), // Stationary relative to barycenter
mass: Mass(MassKg(1.988410e30)), // Solar mass in kg
radius: Radius(DistanceAu(0.00465)), // Solar radius in AU (695700 km / 149597870.691)
},
Star,
Trackable {},
));
// Earth - From NASA JPL Horizons data (A.D. 2000-Jan-01 12:00:00.0000 TDB)
// Position and velocity vectors in ecliptic J2000.0 frame relative to Sun
// Mass = 5.97219 x 10^24 kg, Mean radius = 6371.01 km = 0.0000426 AU
commands.spawn((
ObjectBundle {
name: Name(ObjectName("Earth".to_string())),
position: Position(PositionAu(DVec3::new( position: Position(PositionAu(DVec3::new(
body_data.position.0, -1.771350992727098e-1, // X = -0.177135 AU
body_data.position.1, 9.672416867665306e-1, // Y = 0.967242 AU
body_data.position.2, -4.085281582511366e-6, // Z = -4.085e-6 AU
))), ))),
velocity: Velocity(VelocityAuPerDay(DVec3::new( velocity: Velocity(VelocityAuPerDay(DVec3::new(
body_data.velocity.0, -1.720762506872895e-2, // VX = -0.0172076 AU/day
body_data.velocity.1, -3.158782144324866e-3, // VY = -0.00315878 AU/day
body_data.velocity.2, 1.049888594613343e-7, // VZ = 1.04989e-7 AU/day
))), ))),
mass: Mass(MassSolarMass(mass_solar)), mass: Mass(MassKg(5.97219e24)), // Earth mass in kg
radius: Radius(DistanceAu(radius_au)), radius: Radius(DistanceAu(0.0000426)), // Mean radius in AU (6371.01 km / 149597870.691)
}, },
Trackable {}, Trackable {},
Transform::default(),
Visibility::default(),
));
let scene_handle = asset_server.load(format!("models/{}#Scene0", body_data.model.path));
entity_commands.with_child((
SceneRoot(scene_handle.clone()),
Transform::from_scale(
Vec3::new(
body_data.model.scale.0,
body_data.model.scale.1,
body_data.model.scale.2,
) / AU_TO_KM as f32
* 10000.,
),
)); ));
// Add special components for Sun and Earth // Moon - From NASA JPL Horizons data (A.D. 2000-Jan-01 12:00:00.0000 TDB)
match body_data.name.as_str() { // Position and velocity vectors in ecliptic J2000.0 frame relative to Sun
"Sun" => { // Mass = 7.349 x 10^22 kg, Mean radius = 1737.53 km = 0.0000116 AU
entity_commands.insert(Star); commands.spawn((
entity_commands.insert(NeedsEmissiveEnhancement); ObjectBundle {
entity_commands.insert(PointLight { name: Name(ObjectName("Moon".to_string())),
color: Color::WHITE, position: Position(PositionAu(DVec3::new(
shadows_enabled: true, -1.790843809223965e-1, // X = -0.179084 AU
..default() 9.654035607264573e-1, // Y = 0.965404 AU
}); 2.383726922995396e-4, // Z = 0.000238373 AU
} ))),
"Earth" => { velocity: Velocity(VelocityAuPerDay(DVec3::new(
entity_commands.insert(Earth); -1.683595459141215e-2, // VX = -0.0168360 AU/day
} -3.580960720855671e-3, // VY = -0.00358096 AU/day
_ => {} -6.540550604528720e-6, // VZ = -6.54055e-6 AU/day
} ))),
mass: Mass(MassKg(7.349e22)), // Moon mass in kg
info!("Spawned celestial body: {}", body_data.name); radius: Radius(DistanceAu(0.0000116)), // Mean radius in AU (1737.53 km / 149597870.691)
} },
Trackable {},
));
} }
// High precision constants // High precision constants
const SOLAR_MASS_KG: f64 = 1.98841e30; // kg (for mass conversion) const G_SI: f64 = 6.67430e-11; // Gravitational constant in m³/kg/s² (2018 CODATA value)
const AU_TO_M: f64 = 149597870691.0; // AU to meters (IAU 2012 definition, exact)
const DAY_TO_S: f64 = 86400.0; // Day to seconds (exact)
// Gaussian gravitational constant (standard in astronomy) // Pre-calculated G in AU³/kg/day² units for optimization
const K_GAUSS: f64 = 0.01720209895; // AU^(3/2) / (solar_mass^(1/2) × day) // G_AU = G_SI * (day²/s²) / (AU³/m³)
// G_AU = G_SI * (DAY_TO_S²) / (AU_TO_M³)
const G_AU: f64 = G_SI * (DAY_TO_S * DAY_TO_S) / (AU_TO_M * AU_TO_M * AU_TO_M);
// G in AU^3 / (solar_mass day^2) const STEPS: usize = 100;
// Derived from Gaussian constant: G_AU = k² where k is the Gaussian constant // Time step calculation:
// This gives G×M_sun in AU³/day² units, and since we use solar mass units (M_sun = 1), G_AU = k² // FixedUpdate runs at 64fps, 1 game second = 7 days, 100 steps per FixedUpdate
const G_AU: f64 = K_GAUSS * K_GAUSS; // DT = (7 days / 64 fps) / 100 steps = 7 / (64 * 100) = 0.00109375 days per step
const DT: f64 = 7.0 / (64.0 * STEPS as f64); // Time step in days
const STEPS: usize = 20; // Number of steps per fixed update
// If FixedUpdate is 64 Hz and you want 1 day per game second: DT = 1/(64*STEPS) day/step
const DT: f64 = 1.0 / (64.0 * STEPS as f64);
fn n_body(mut query: Query<(&Mass, &mut Position, &mut Velocity)>) { fn n_body(mut query: Query<(&Mass, &mut Position, &mut Velocity)>) {
// Pull data out once. This copy lets us integrate freely without borrow issues. // Collect all bodies data (mass, position, velocity)
// (If you want zero copies, use a Resource scratch buffer and reuse it across frames.)
let mut bodies: Vec<(f64, DVec3, DVec3)> = query let mut bodies: Vec<(f64, DVec3, DVec3)> = query
.iter() .iter()
.map(|(mass, pos, vel)| (mass.0.0, pos.0.0, vel.0.0)) .map(|(mass, pos, vel)| (mass.0.0, pos.0.0, vel.0.0))
.collect(); .collect();
let n = bodies.len(); // Perform integration steps
if n < 2 {
// Nothing to do; write back if needed and return
for (i, (_m, mut pos, mut vel)) in query.iter_mut().enumerate() {
if let Some(b) = bodies.get(i) {
pos.0.0 = b.1;
vel.0.0 = b.2;
}
}
return;
}
// Single reusable acceleration buffer
let mut acc: Vec<DVec3> = vec![DVec3::ZERO; n];
// Pairwise acceleration accumulation (O(n^2)/2) with Newton's 3rd law
let compute_accelerations = |bodies: &[(f64, DVec3, DVec3)], acc: &mut [DVec3]| {
acc.fill(DVec3::ZERO);
for i in 0..n - 1 {
let (mi, pi, _) = bodies[i];
for j in (i + 1)..n {
let (mj, pj, _) = bodies[j];
let r = pj - pi; // AU
let r2 = r.length_squared(); // AU^2
// Tighter epsilon in AU^2; avoids division by ~0 without killing legit close passes
if r2 > 1e-20 {
// a_i = G * m_j * r / r^3, a_j = -G * m_i * r / r^3
let inv_r = r2.sqrt().recip(); // 1 / r
let inv_r3 = inv_r * inv_r * inv_r; // 1 / r^3
let a_i = r * (G_AU * mj * inv_r3);
let a_j = r * (G_AU * mi * inv_r3);
acc[i] += a_i;
acc[j] -= a_j; // opposite direction
}
}
}
};
// Leapfrog / velocity-Verlet
for _ in 0..STEPS { for _ in 0..STEPS {
// v += a(q) * dt/2 // Calculate forces for all bodies
compute_accelerations(&bodies, &mut acc); let mut forces: Vec<DVec3> = vec![DVec3::ZERO; bodies.len()];
for i in 0..n {
bodies[i].2 += acc[i] * (DT * 0.5);
}
// q += v * dt for i in 0..bodies.len() {
for i in 0..n { for j in 0..bodies.len() {
let vel = bodies[i].2; // copy DVec3 (cheap, it's just 3 f64s) if i != j {
bodies[i].1 += vel * DT; let r_vec = bodies[j].1 - bodies[i].1; // Position difference in AU
} let r_mag_au = r_vec.length();
// v += a(q_new) * dt/2 if r_mag_au > 1e-10 {
compute_accelerations(&bodies, &mut acc); // Avoid division by zero
for i in 0..n { // Calculate force directly in AU/day² units
bodies[i].2 += acc[i] * (DT * 0.5); let force_magnitude =
G_AU * bodies[i].0 * bodies[j].0 / (r_mag_au * r_mag_au);
let acceleration = force_magnitude / bodies[i].0; // F/m = a
let force_vec = r_vec.normalize() * acceleration;
forces[i] += force_vec;
}
}
} }
} }
// Write back // Update velocities and positions using Verlet integration
for i in 0..bodies.len() {
// Update velocity: v += a * dt
bodies[i].2 += forces[i] * DT;
// Update position: x += v * dt
let velocity = bodies[i].2;
bodies[i].1 += velocity * DT;
}
}
// Write back updated positions and velocities
for (i, (_mass, mut pos, mut vel)) in query.iter_mut().enumerate() { for (i, (_mass, mut pos, mut vel)) in query.iter_mut().enumerate() {
let (_, p, v) = bodies[i]; if let Some(body) = bodies.get(i) {
pos.0.0 = p; pos.0.0 = body.1;
vel.0.0 = v; vel.0.0 = body.2;
}
} }
} }
@ -565,26 +415,15 @@ fn main() {
primary_window: Some(Window { primary_window: Some(Window {
title: "Solar Sim".to_string(), title: "Solar Sim".to_string(),
mode: WindowMode::BorderlessFullscreen(MonitorSelection::Primary), mode: WindowMode::BorderlessFullscreen(MonitorSelection::Primary),
resolution: WindowResolution::default().with_scale_factor_override(2.0),
..default() ..default()
}), }),
..default() ..default()
})) }))
.add_plugins(EguiPlugin::default())
.add_plugins(PanOrbitCameraPlugin) .add_plugins(PanOrbitCameraPlugin)
.register_type::<Name>() .add_plugins(EguiPlugin::default())
.register_type::<Radius>()
.register_type::<DistanceAu>()
.register_type::<Mass>()
.register_type::<MassSolarMass>()
.add_plugins(WorldInspectorPlugin::new()) .add_plugins(WorldInspectorPlugin::new())
.add_plugins(SolarRenderingPlugin) // we want Bevy to measure these values for us: .add_plugins(SolarRenderingPlugin)
.add_plugins(bevy::diagnostic::FrameTimeDiagnosticsPlugin::default()) .add_systems(Startup, setup_solar_system)
.add_plugins(bevy::diagnostic::EntityCountDiagnosticsPlugin) .add_systems(FixedUpdate, n_body)
.add_plugins(bevy::diagnostic::SystemInformationDiagnosticsPlugin)
.add_plugins(bevy::render::diagnostic::RenderDiagnosticsPlugin)
.add_plugins(PerfUiPlugin)
.add_systems(Startup, (setup_solar_system).chain())
.add_systems(FixedUpdate, n_body) // Use the optimized n-body system
.run(); .run();
} }