Compare commits

...

10 Commits

Author SHA1 Message Date
bd37295da9 update 2025-08-18 01:12:45 +09:00
e83da3156b update 2025-08-18 01:10:56 +09:00
07ccac9c2a update. 2025-08-15 10:31:40 +09:00
1a97b9e986 update 2025-08-15 10:15:26 +09:00
ee4590276a update 2025-08-15 09:59:59 +09:00
945784a7cf update 2025-08-15 08:50:02 +09:00
c798cc8547 update 2025-08-14 16:52:35 +09:00
b992a1dd5f update 2025-08-14 12:53:16 +09:00
ad4c3ada92 update 2025-08-14 12:41:56 +09:00
432e5a737a update 2025-08-14 10:00:31 +09:00
77 changed files with 11235 additions and 628 deletions

1356
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -7,6 +7,19 @@ edition = "2024"
bevy = "0.16" bevy = "0.16"
bevy-inspector-egui = "0.33.1" bevy-inspector-egui = "0.33.1"
bevy_panorbit_camera = "0.26" bevy_panorbit_camera = "0.26"
big_space = { version = "0.10.0", features = ["camera"] }
chrono = "0.4.41"
futures = "0.3.31"
iyes_perf_ui = "0.5.0"
rayon = "1.11.0"
regex = "1.11.1"
reqwest = { version = "0.12", features = ["json"] }
rhorizons = "0.5.0"
ron = "0.10.1"
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
thiserror = "2.0"
tokio = { version = "1.47.1", features = ["full"] }
# Enable a small amount of optimization in the dev profile. # Enable a small amount of optimization in the dev profile.
[profile.dev] [profile.dev]

328
assets/initial_state.ron Normal file
View File

@ -0,0 +1,328 @@
// mass kg f64
// radius km f64
// position au f64
// velocity au/day f64
(
bodies: [
(
name: "Sun",
mass: 1.98841e30,
radius: 695700.0,
position: (0.0, 0.0, 0.0),
velocity: (0.0, 0.0, 0.0),
model: (
path: "sun.glb",
scale: (4.016625881e-2, 4.016625881e-2, 4.016625881e-2),
),
),
(
name: "Mercury",
mass: 3.302e23,
radius: 2439.4,
position: (-3.873030085256687e-01, -1.617241946342014e-01, 2.230772540124238e-02),
velocity: (5.024430196457658e-03, -2.474345331076241e-02, -2.482923861184285e-03),
model: (
path: "mercury.glb",
scale: (1.409040560e-4, 1.407730015e-4, 1.409040560e-4),
),
),
(
name: "Venus",
mass: 4.8685e24,
radius: 6051.84,
position: (4.534187654737982e-01, 5.622160792960551e-01, -1.844136025242647e-02),
velocity: (-1.580627428004959e-02, 1.261006264179427e-02, 1.085217883057661e-03),
model: (
path: "venus.glb",
scale: (3.494008561e-4, 3.494008561e-4, 3.494008561e-4),
),
),
(
name: "Earth",
mass: 5.97219e24,
radius: 6371.01,
position: (-1.786834409731047e-01, 9.669827953774551e-01, -5.109423915082682e-05),
velocity: (-1.720473858166942e-02, -3.193533189307208e-03, 5.457174067040888e-09),
model: (
path: "earth.glb",
scale: (3.686534474e-4, 3.674174368e-4, 3.686534474e-4),
),
),
(
name: "Mars",
mass: 6.4171e23,
radius: 3389.92,
position: (-5.216858665681381e-01, 1.525234576802456e+00, 4.475559803760917e-02),
velocity: (-1.271183490340250e-02, -3.338839586395265e-03, 2.417788175776839e-04),
model: (
path: "mars.glb",
scale: (1.964640105e-4, 1.953076135e-4, 1.964640105e-4),
),
),
(
name: "Jupiter",
mass: 1.89819e27,
radius: 69911.0,
position: (1.056033545576702e+00, 4.971452162023883e+00, -4.427806378454757e-02),
velocity: (-7.476272400979211e-03, 1.924466075080766e-03, 1.592575331437652e-04),
model: (
path: "jupiter.glb",
scale: (4.216764122e-3, 3.943203948e-3, 4.216764122e-3),
),
),
(
name: "Saturn",
mass: 5.6834e26,
radius: 58232.0,
position: (9.461067271500818e+00, -1.764614720843175e+00, -3.458764004169705e-01),
velocity: (7.093807804551229e-04, 5.475097536527790e-03, -1.232345969963958e-04),
model: (
path: "saturn.glb",
scale: (1.828302280e-3, 1.649197191e-3, 1.828302280e-3),
),
),
(
name: "Uranus",
mass: 8.6813e25,
radius: 25362.0,
position: (1.110362881512566e+01, 1.609448391218202e+01, -8.419833258524990e-02),
velocity: (-3.273728238819980e-03, 2.053528328895527e-03, 5.008589052969062e-05),
model: (
path: "uranus.glb",
scale: (1.486925757e-3, 1.452834462e-3, 1.486925757e-3),
),
),
(
name: "Neptune",
mass: 1.02409e26,
radius: 24624.0,
position: (2.987992735576156e+01, -6.341879950443392e-01, -6.754997950415415e-01),
velocity: (3.941595250081164e-05, 3.160389775728832e-03, -6.636996572427530e-05),
model: (
path: "neptune.glb",
scale: (1.437890343e-3, 1.413329272e-3, 1.437890343e-3),
),
),
(
name: "Moon",
mass: 7.349e22,
radius: 1737.53,
position: (-1.776670337217189e-01, 9.646511868801392e-01, -2.560710414773878e-04),
velocity: (-1.666610342674751e-02, -2.935662211368250e-03, 2.214641479437884e-05),
model: (
path: "moon.glb",
scale: (1.003505604e-4, 1.003505604e-4, 1.003505604e-4),
),
),
(
name: "Phobos",
mass: 1.08e16,
radius: 11.1,
position: (-5.216607506283159e-01, 1.525290094552813e+00, 4.474552444674667e-02),
velocity: (-1.371531677510715e-02, -2.797359927923991e-03, 7.604209362929195e-04),
model: (
path: "phobos.glb",
scale: (3.111071419e-5, 2.177749957e-5, 2.728170512e-5),
),
),
(
name: "Deimos",
mass: 1.80e15,
radius: 6.2,
position: (-5.215476623931578e-01, 1.525280501692070e+00, 4.469744727198185e-02),
velocity: (-1.290124900899404e-02, -2.594527535740538e-03, 3.799855876623048e-04),
model: (
path: "deimos.glb",
scale: (3.572769492e-5, 2.336041507e-5, 2.748284533e-5),
),
),
(
name: "Io",
mass: 8.93e22,
radius: 1821.49,
position: (1.053815818667817e+00, 4.969715993299296e+00, -4.437108516416628e-02),
velocity: (-1.329530996368361e-03, -5.983335980023409e-03, -3.295420474951598e-05),
model: (
path: "io.glb",
scale: (1.056204637e-4, 1.048294944e-4, 1.050431092e-4),
),
),
(
name: "Europa",
mass: 4.80e22,
radius: 1560.8,
position: (1.060479105966296e+00, 4.971193788432235e+00, -4.418907806556983e-02),
velocity: (-6.967074192246404e-03, 9.896683771810605e-03, 4.296001484155991e-04),
model: (
path: "europa.glb",
scale: (9.021675214e-5, 9.003777086e-5, 9.008396592e-5),
),
),
(
name: "Ganymede",
mass: 1.48e23,
radius: 2631.2,
position: (1.062520398626604e+00, 4.968458682597362e+00, -4.429967587277176e-02),
velocity: (-4.841408463186764e-03, 7.634290231598638e-03, 4.147177169244575e-04),
model: (
path: "ganymede.glb",
scale: (1.519124053e-4, 1.519124053e-4, 1.519124053e-4),
),
),
(
name: "Callisto",
mass: 1.08e23,
radius: 2410.3,
position: (1.046927187861326e+00, 4.980213520221207e+00, -4.412635447845523e-02),
velocity: (-1.076662893789138e-02, -1.453153071657253e-03, 9.400054299331563e-06),
model: (
path: "callisto.glb",
scale: (1.391587430e-4, 1.391587430e-4, 1.391587430e-4),
),
),
(
name: "Mimas",
mass: 3.75e19,
radius: 198.8,
position: (9.462113317387443e+00, -1.764120396234732e+00, -3.462575454806998e-01),
velocity: (-3.600569225193193e-03, 1.195945377622506e-02, -3.321658418910402e-03),
model: (
path: "mimas.glb",
scale: (3.022084638e-5, 2.771941035e-5, 2.860654604e-5),
),
),
(
name: "Enceladus",
mass: 1.0805e20,
radius: 252.3,
position: (9.462107070733344e+00, -1.763590731315564e+00, -3.465134777458668e-01),
velocity: (-4.799068161710644e-03, 9.904458072213898e-03, -1.910803547584920e-03),
model: (
path: "enceladus.glb",
scale: (1.481480831e-5, 1.433560737e-5, 1.451458593e-5),
),
),
(
name: "Tethys",
mass: 6.176e20,
radius: 536.3,
position: (9.463028141754283e+00, -1.764725184828637e+00, -3.460263238634043e-01),
velocity: (8.124741088132637e-04, 1.132977234261396e-02, -3.072248079372077e-03),
model: (
path: "tethys.glb",
scale: (3.129428660e-5, 3.059098162e-5, 3.070722960e-5),
),
),
(
name: "Dione",
mass: 1.09572e21,
radius: 562.5,
position: (9.460669031566509e+00, -1.762393870120674e+00, -3.470001695782450e-01),
velocity: (-4.995042476514132e-03, 4.898468069198046e-03, 7.315317142172153e-04),
model: (
path: "dione.glb",
scale: (3.252791430e-5, 3.230852235e-5, 3.240667138e-5),
),
),
(
name: "Rhea",
mass: 2.309e21,
radius: 764.5,
position: (9.463441058546145e+00, -1.766997606737125e+00, -3.448366300385151e-01),
velocity: (4.307393238751094e-03, 8.273257376182423e-03, -1.932435874857194e-03),
model: (
path: "rhea.glb",
scale: (4.416729644e-5, 4.401718616e-5, 4.405760046e-5),
),
),
(
name: "Titan",
mass: 1.34553e23,
radius: 2575.5,
position: (9.468440328490537e+00, -1.762284834421733e+00, -3.478122131916790e-01),
velocity: (-4.611400435334967e-04, 8.260265884102586e-03, -1.443082816825538e-03),
model: (
path: "titan.glb",
scale: (1.486763649e-4, 1.486371038e-4, 1.486549882e-4),
),
),
(
name: "Iapetus",
mass: 1.8059e21,
radius: 734.5,
position: (9.454548058738080e+00, -1.786906158368561e+00, -3.394196336672040e-01),
velocity: (2.477125925502744e-03, 4.942920731685813e-03, -3.564738618756286e-04),
model: (
path: "iapetus.glb",
scale: (4.305300899e-5, 4.111311500e-5, 4.305300899e-5),
),
),
(
name: "Miranda",
mass: 6.59e19,
radius: 235.8,
position: (1.110338075481133e+01, 1.609470886437212e+01, -8.339848717695617e-02),
velocity: (2.787135511093017e-04, 1.302160355796409e-03, 1.366210183434322e-03),
model: (
path: "miranda.glb",
scale: (1.387950124e-5, 1.344648808e-5, 1.352154413e-5),
),
),
(
name: "Ariel",
mass: 1.25e21,
radius: 578.9,
position: (1.110453239435098e+01, 1.609416926126415e+01, -8.504238243640228e-02),
velocity: (-5.417334967749265e-03, 2.196892645955784e-03, -2.298152372242362e-03),
model: (
path: "ariel.glb",
scale: (3.354982618e-5, 3.335352449e-5, 3.336507143e-5),
),
),
(
name: "Umbriel",
mass: 1.28e21,
radius: 584.7,
position: (1.110253678329407e+01, 1.609490555702174e+01, -8.286998450094619e-02),
velocity: (-1.219602563560983e-03, 1.849034126664038e-03, 1.801100761916168e-03),
model: (
path: "umbriel.glb",
scale: (3.375767119e-5, 3.375767119e-5, 3.375767119e-5),
),
),
(
name: "Titania",
mass: 3.34e21,
radius: 788.9,
position: (1.110510884778205e+01, 1.609382177197045e+01, -8.661833178512783e-02),
velocity: (-5.032495225759578e-03, 2.280002002691279e-03, -1.088327315015861e-03),
model: (
path: "titania.glb",
scale: (4.554716361e-5, 4.554716361e-5, 4.554716361e-5),
),
),
(
name: "Oberon",
mass: 3.08e21,
radius: 761.4,
position: (1.110301190463219e+01, 1.609515778477002e+01, -8.040210462613612e-02),
velocity: (-1.519780917379062e-03, 1.720169702110850e-03, 3.926675849694972e-04),
model: (
path: "oberon.glb",
scale: (4.395945143e-5, 4.395945143e-5, 4.395945143e-5),
),
),
(
name: "Triton",
mass: 2.14e22,
radius: 1352.6,
position: (2.987802053077272e+01, -6.355569689698364e-01, -6.751627943073906e-01),
velocity: (-6.787804924900204e-04, 4.636375429506899e-03, 1.865945736548040e-03),
model: (
path: "triton.glb",
scale: (7.809240196e-5, 7.809240196e-5, 7.809240196e-5),
),
),
],
)

View File

@ -0,0 +1,115 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 29, 2025 Ariel / (Uranus) 701
SATELLITE PHYSICAL PROPERTIES:
Radius (km) = 581.1x577.9x577.7 Density (g cm^-3) = 1.54 +- 0.026
GM (km^3/s^2) = 83.43 +- 1.40 Geometric Albedo = 0.34
V(1,0) = +1.45
SATELLITE ORBITAL DATA (mean elements referred to equatorial plane & IAU pole)
Semi-major axis, a (km) = 191.2 (10^3) Orbital period = 2.520 d
Eccentricity, e = 0.0034 Rotational period = Synchronous
Inclination, i (deg) = 179.69
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:46 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Ariel (701) {source: ura183_merged}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.110453239435098E+01 Y = 1.609416926126415E+01 Z =-8.504238243640228E-02
VX=-5.417334967749265E-03 VY= 2.196892645955784E-03 VZ=-2.298152372242362E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.110452863095813E+01 Y = 1.609417078735579E+01 Z =-8.504397710872791E-02
VX=-5.421235378195795E-03 VY= 2.198251211682732E-03 VZ=-2.294502747948997E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,114 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Mar 12, 2021 Callisto / (Jupiter) 504
SATELLITE PHYSICAL PROPERTIES:
Mean radius (km) = 2410.3 +- 1.5 Density (g cm^-3)= 1.834 +- 0.004
GM (km^3/s^2) = 7179.2834 +- 0.0097 Geometric Albedo = 0.17 +- 0.02
SATELLITE ORBIT (at J2000.0 epoch, 2000-Jan-1.5):
Semi-major axis, a (km)~ 1,883,000 Orbital period ~ 16.691 d
Eccentricity, e ~ 0.00744 Rotational period= Synchronous
Inclination, i (deg) ~ 0.200
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:34 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Callisto (504) {source: jup365_merged}
Center body name: Sun (10) {source: jup365_merged}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.046927187861326E+00 Y = 4.980213520221207E+00 Z =-4.412635447845523E-02
VX=-1.076662893789138E-02 VY=-1.453153071657253E-03 VZ= 9.400054299331563E-06
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.046919711342476E+00 Y = 4.980212510788754E+00 Z =-4.412634795573506E-02
VX=-1.076574531183088E-02 VY=-1.454012353275114E-03 VZ= 9.385381807833990E-06
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,115 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jun 02, 2025 Deimos / (Mars) 402
SATELLITE PHYSICAL PROPERTIES:
Radius (km) = 7.8 x 6.0 x 5.1 Density (g cm^-3) = 1.76 +- 0.30
Mass (10^20 kg ) = 1.80 (10^-5) Geometric Albedo = 0.06
(+- 0.15) V(1,0) = +12.89
SATELLITE ORBITAL DATA:
Semi-major axis, a (km) = 23.4632(10^3) Orbital period = 1.263 d
Eccentricity, e = 0.00033 Rotational period = Synchronous
Inclination, i (deg) = 1.791
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:28 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Deimos (402) {source: mar099}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X =-5.215476623931578E-01 Y = 1.525280501692070E+00 Z = 4.469744727198185E-02
VX=-1.290124900899404E-02 VY=-2.594527535740538E-03 VZ= 3.799855876623048E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X =-5.215566224100128E-01 Y = 1.525278699635617E+00 Z = 4.469771149715475E-02
VX=-1.290359915493358E-02 VY=-2.595396531058469E-03 VZ= 3.809826346570343E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,117 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 26, 2022 Dione / (Saturn) 604
http://ssd.jpl.nasa.gov/?sat_phys_par
http://ssd.jpl.nasa.gov/?sat_elem
SATELLITE PHYSICAL PROPERTIES:
Mean Radius (km) = 562.5 +- 5 Density (g/cm^3) = 1.469 +- 0.012
Mass (10^19 kg) = 109.572 Geometric Albedo = 0.6
GM (km^3/s^2) = 73.116 +- 0.02 V(1,0) = +0.8
SATELLITE ORBITAL DATA (mean values referred to local Laplace plane):
Semi-major axis, a (km) = 377.42(10^3) Orbital period = 2.736915 d
Eccentricity, e = 0.0022 Rotational period = Synchronous
Inclination, i (deg) = 0.028
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:39 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Dione (604) {source: sat441l}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 9.460669031566509E+00 Y =-1.762393870120674E+00 Z =-3.470001695782450E-01
VX=-4.995042476514132E-03 VY= 4.898468069198046E-03 VZ= 7.315317142172153E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 9.460665563295446E+00 Y =-1.762390471236195E+00 Z =-3.469996601384587E-01
VX=-4.993575760054306E-03 VY= 4.890319489938703E-03 VZ= 7.356544990270154E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,14 +1,10 @@
curl -s "https://ssd.jpl.nasa.gov/api/horizons.api?format=text&COMMAND=%27399%27&CENTER=%27%40sun%27&EPHEM_TYPE=%27VECTORS%27&OUT_UNITS=%27AU-D%27&START_TIME=%272000-01-01%2012:00%27&STOP_TIME=%272000-01-01%2012:01%27&STEP_SIZE=%271%20m%27&VEC_TABLE=2&REF_PLANE=%27ECLIPTIC%27&REF_SYSTEM=%27J2000%27"
API VERSION: 1.2 API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API API SOURCE: NASA/JPL Horizons API
******************************************************************************* *******************************************************************************
Revised: April 12, Revised: April 12, 2021 Earth 399
2021 Earth 399
GEOPHYSICAL PROPERTIES (revised May 9, GEOPHYSICAL PROPERTIES (revised May 9, 2022):
2022):
Vol. Mean Radius (km) = 6371.01+-0.02 Mass x10^24 (kg)= 5.97219+-0.0006 Vol. Mean Radius (km) = 6371.01+-0.02 Mass x10^24 (kg)= 5.97219+-0.0006
Equ. radius, km = 6378.137 Mass layers: Equ. radius, km = 6378.137 Mass layers:
Polar axis, km = 6356.752 Atmos = 5.1 x 10^18 kg Polar axis, km = 6356.752 Atmos = 5.1 x 10^18 kg
@ -27,11 +23,8 @@ API SOURCE: NASA/JPL Horizons API
Moment of inertia = 0.3308 Atm. pressure = 1.0 bar Moment of inertia = 0.3308 Atm. pressure = 1.0 bar
Mean surface temp (Ts), K= 287.6 Volume, km^3 = 1.08321 x 10^12 Mean surface temp (Ts), K= 287.6 Volume, km^3 = 1.08321 x 10^12
Mean effect. temp (Te), K= 255 Magnetic moment = 0.61 gauss Rp^3 Mean effect. temp (Te), K= 255 Magnetic moment = 0.61 gauss Rp^3
Geometric albedo = 0.367 Vis. mag. V(1, Geometric albedo = 0.367 Vis. mag. V(1,0)= -3.86
0)= -3.86 Solar Constant (W/m^2) = 1367.6 (mean), 1414 (perihelion), 1322 (aphelion)
Solar Constant (W/m^2) = 1367.6 (mean),
1414 (perihelion),
1322 (aphelion)
HELIOCENTRIC ORBIT CHARACTERISTICS: HELIOCENTRIC ORBIT CHARACTERISTICS:
Obliquity to orbit, deg = 23.4392911 Sidereal orb period = 1.0000174 y Obliquity to orbit, deg = 23.4392911 Sidereal orb period = 1.0000174 y
Orbital speed, km/s = 29.79 Sidereal orb period = 365.25636 d Orbital speed, km/s = 29.79 Sidereal orb period = 365.25636 d
@ -40,30 +33,19 @@ API SOURCE: NASA/JPL Horizons API
******************************************************************************* *******************************************************************************
Ephemeris / API_USER Wed Aug 13 04: 00: 37 2025 Pasadena, USA / Horizons Ephemeris / API_USER Thu Aug 14 15:51:50 2025 Pasadena, USA / Horizons
******************************************************************************* *******************************************************************************
Target body name: Earth (399) {source: DE441 Target body name: Earth (399) {source: DE441}
} Center body name: Sun (10) {source: DE441}
Center body name: Sun (10) {source: DE441
}
Center-site name: BODY CENTER Center-site name: BODY CENTER
******************************************************************************* *******************************************************************************
Start time : A.D. 2000-Jan-01 12: 00: 00.0000 TDB Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2000-Jan-01 12: 01: 00.0000 TDB Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes Step-size : 1 minutes
******************************************************************************* *******************************************************************************
Center geodetic : 0.0, Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
0.0, Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
0.0 {E-lon(deg),Lat(deg),Alt(km) Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
}
Center cylindric: 0.0,
0.0,
0.0 {E-lon(deg),Dxy(km),Dz(km)
}
Center radii : 695700.0,
695700.0,
695700.0 km {Equator_a, b, pole_c
}
Output units : AU-D Output units : AU-D
Calendar mode : Mixed Julian/Gregorian Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states Output type : GEOMETRIC cartesian states
@ -75,12 +57,12 @@ JDTDB
VX VY VZ VX VY VZ
******************************************************************************* *******************************************************************************
$$SOE $$SOE
2451545.000000000 = A.D. 2000-Jan-01 12: 00: 00.0000 TDB 2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X =-1.771350992727098E-01 Y = 9.672416867665306E-01 Z =-4.085281582511366E-06 X =-1.786834409731047E-01 Y = 9.669827953774551E-01 Z =-5.109423915082682E-05
VX=-1.720762506872895E-02 VY=-3.158782144324866E-03 VZ= 1.049888594613343E-07 VX=-1.720473858166942E-02 VY=-3.193533189307208E-03 VZ= 5.457174067040888E-09
2451545.000694444 = A.D. 2000-Jan-01 12: 01: 00.0000 TDB 2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X =-1.771470489993106E-01 Y = 9.672394930949845E-01 Z =-4.085208640488331E-06 X =-1.786953886946605E-01 Y = 9.669805775731443E-01 Z =-5.109423538992340E-05
VX=-1.720758754114626E-02 VY=-3.158991907845201E-03 VZ= 1.050842029536420E-07 VX=-1.720469949887746E-02 VY=-3.193743226004856E-03 VZ= 5.374519991317428E-09
$$EOE $$EOE
******************************************************************************* *******************************************************************************
@ -116,10 +98,7 @@ REFERENCE FRAME AND COORDINATES
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch. of Earth's north pole at the reference epoch.
Symbol meaning [ Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
1 au= 149597870.700 km,
1 day= 86400.0 s
]:
JDTDB Julian Day Number, Barycentric Dynamical Time JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au) X X-component of position vector (au)
@ -139,14 +118,14 @@ Computations by ...
4800 Oak Grove Drive, Jet Propulsion Laboratory 4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA Pasadena, CA 91109 USA
General site: https: //ssd.jpl.nasa.gov/ General site: https://ssd.jpl.nasa.gov/
Mailing list: https: //ssd.jpl.nasa.gov/email_list.html Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https: //ssd.jpl.nasa.gov/horizons/news.html System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https: //ssd.jpl.nasa.gov/horizons/manual.html User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https: //ssd.jpl.nasa.gov/horizons/app.html#/x Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https: //ssd-api.jpl.nasa.gov/doc/horizons.html API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775 command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https: //ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https: //ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov Author : Jon.D.Giorgini@jpl.nasa.gov
******************************************************************************* *******************************************************************************

View File

@ -0,0 +1,117 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 26, 2022 Enceladus / (Saturn) 602
http://ssd.jpl.nasa.gov/?sat_phys_par
http://ssd.jpl.nasa.gov/?sat_elem
SATELLITE PHYSICAL PROPERTIES:
Mean Radius (km) = 252.3 +- 0.6 Density (g/cm^3) = 1.606 +- 0.012
Mass (10^19 kg) = 10.805 Geometric Albedo = 1.04
GM (km^3/s^2) = 7.210367 V(1,0) = +2.2
SATELLITE ORBITAL DATA (mean elements referred to local Laplace plane):
Semi-major axis, a (km) = 238.04(10^3) Orbital period = 1.370218 d
Eccentricity, e = 0.0047 Rotational period = Synchronous
Inclination, i (deg) = 0.009
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:41 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Enceladus (602) {source: sat441l}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 9.462107070733344E+00 Y =-1.763590731315564E+00 Z =-3.465134777458668E-01
VX=-4.799068161710644E-03 VY= 9.904458072213898E-03 VZ=-1.910803547584920E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 9.462103732792631E+00 Y =-1.763583858405023E+00 Z =-3.465148014677353E-01
VX=-4.814191894040593E-03 VY= 9.889516719170488E-03 VZ=-1.901512359359666E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,114 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Mar 12, 2021 Europa / (Jupiter) 502
SATELLITE PHYSICAL PROPERTIES:
Mean radius (km) = 1560.8 +- 0.3 Density (g cm^-3)= 3.013 +- 0.005
GM (km^3/s^2) = 3202.7121+- 0.0054 Geometric Albedo = 0.67 +/- 0.03
SATELLITE ORBIT (at J2000.0 epoch, 2000-Jan-1.5):
Semi-major axis, a (km) ~ 671,000 Orbital period ~ 3.55 d
Eccentricity, e ~ 0.00981 Rotational period = Synchronous
Inclination, i (deg) ~ 0.462
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:31 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Europa (502) {source: jup365_merged}
Center body name: Sun (10) {source: jup365_merged}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.060479105966296E+00 Y = 4.971193788432235E+00 Z =-4.418907806556983E-02
VX=-6.967074192246404E-03 VY= 9.896683771810605E-03 VZ= 4.296001484155991E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.060474264291992E+00 Y = 4.971200661324026E+00 Z =-4.418877980080166E-02
VX=-6.976947895835117E-03 VY= 9.897242536020881E-03 VZ= 4.294023144406136E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,114 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Mar 12, 2021 Ganymede / (Jupiter) 503
SATELLITE PHYSICAL PROPERTIES:
Mean radius (km) = 2631.2 +- 1.7 Density (g cm^-3)= 1.942 +- 0.005
GM (km^3/s^2) = 9887.8328+- 0.0074 Geometric Albedo = 0.43 +- 0.02
SATELLITE ORBIT (at J2000.0 epoch, 2000-Jan-1.5):
Semi-major axis, a (km) ~ 1,070,000 Orbital period ~ 7.155 d
Eccentricity, e ~ 0.00146 Rotational period= Synchronous
Inclination, i (deg) ~ 0.207
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:32 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Ganymede (503) {source: jup365_merged}
Center body name: Sun (10) {source: jup365_merged}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.062520398626604E+00 Y = 4.968458682597362E+00 Z =-4.429967587277176E-02
VX=-4.841408463186764E-03 VY= 7.634290231598638E-03 VZ= 4.147177169244575E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.062517035324768E+00 Y = 4.968463984744183E+00 Z =-4.429938787030207E-02
VX=-4.844900988782714E-03 VY= 7.635892259759473E-03 VZ= 4.147293801627869E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,117 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 26, 2022 Iapetus / (Saturn) 608
http://ssd.jpl.nasa.gov/?sat_phys_par
http://ssd.jpl.nasa.gov/?sat_elem
SATELLITE PHYSICAL PROPERTIES:
Radius (km) = 734.5 +- 4.0 Density (g/cm^3)= 1.088 +- 0.018
Mass (10^19 kg) = 180.59 Geometric Albedo= 0.6
GM (km^3/s^2) = 120.52 +- 0.03 V(1,0) = +1.5 (.7-2.5)
SATELLITE ORBITAL DATA (mean values with respect to local Laplace plane):
Semi-major axis, a (km)= 3560.84 (10^3) Orbital period = 79.33 d
Eccentricity, e = 0.0283 Rotational period = Synchronous
Inclination, i (deg) = 7.489
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:37 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Iapetus (608) {source: sat441l}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 9.454548058738080E+00 Y =-1.786906158368561E+00 Z =-3.394196336672040E-01
VX= 2.477125925502744E-03 VY= 4.942920731685813E-03 VZ=-3.564738618756286E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 9.454549778973153E+00 Y =-1.786902725752121E+00 Z =-3.394198812278713E-01
VX= 2.477151084385878E-03 VY= 4.943014616239762E-03 VZ=-3.565008602876317E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,114 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Mar 12, 2021 Io / (Jupiter) 501
SATELLITE PHYSICAL PROPERTIES:
Mean radius (km) = 1821.49 Density (g cm^-3) = 3.528 +- 0.006
GM (km^3/s^2) = 5959.9155+- 0.004 Geometric Albedo = 0.63 +- 0.02
SATELLITE ORBIT (at J2000.0 epoch, 2000-Jan-1.5):
Semi-major axis, a (km)~ 422,000 Orbital period ~ 1.77 d
Eccentricity, e ~ 0.00472 Rotational period = Synchronous
Inclination, i (deg) ~ 0.0375
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:30 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Io (501) {source: jup365_merged}
Center body name: Sun (10) {source: jup365_merged}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.053815818667817E+00 Y = 4.969715993299296E+00 Z =-4.437108516416628E-02
VX=-1.329530996368361E-03 VY=-5.983335980023409E-03 VZ=-3.295420474951598E-05
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.053814902131768E+00 Y = 4.969711843495328E+00 Z =-4.437110776557460E-02
VX=-1.310099171031782E-03 VY=-5.968091504155077E-03 VZ=-3.213765991234832E-05
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,125 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: April 12, 2021 Jupiter 599
PHYSICAL DATA (revised 2025-Jan-30):
Mass x 10^26 (kg) = 18.9819 Density (g/cm^3) = 1.3262 +- .0003
Equat. radius (1 bar) = 71492+-4 km Polar radius (km) = 66854+-10
Vol. Mean Radius (km) = 69911+-6 Flattening = 0.06487
Geometric Albedo = 0.52 Rocky core mass (Mc/M)= 0.0261
Sid. rot. period (III)= 9h 55m 29.711 s Sid. rot. rate (rad/s)= 0.00017585
Mean solar day, hrs = ~9.9259
GM (km^3/s^2) = 126686531.900 GM 1-sigma (km^3/s^2) = +- 1.2732
Equ. grav, ge (m/s^2) = 24.79 Pol. grav, gp (m/s^2) = 28.34
Vis. magnitude V(1,0) = -9.40
Vis. mag. (opposition)= -2.70 Obliquity to orbit = 3.13 deg
Sidereal orbit period = 11.861982204 y Sidereal orbit period = 4332.589 d
Mean daily motion = 0.0831294 deg/d Mean orbit speed, km/s= 13.0697
Atmos. temp. (1 bar) = 165+-5 K Escape speed, km/s = 59.5
A_roche(ice)/Rp = 2.76 Hill's sphere rad. Rp = 740
Perihelion Aphelion Mean
Solar Constant (W/m^2) 56 46 51
Maximum Planetary IR (W/m^2) 13.7 13.4 13.6
Minimum Planetary IR (W/m^2) 13.7 13.4 13.6
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 15:51:54 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Jupiter (599) {source: jup365_merged}
Center body name: Sun (10) {source: jup365_merged}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.056033545576702E+00 Y = 4.971452162023883E+00 Z =-4.427806378454757E-02
VX=-7.476272400979211E-03 VY= 1.924466075080766E-03 VZ= 1.592575331437652E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.056028353720140E+00 Y = 4.971453498455673E+00 Z =-4.427795318902549E-02
VX=-7.476274498134918E-03 VY= 1.924457475706055E-03 VZ= 1.592575690535828E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,126 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: June 02, 2025 Mars 499 / 4
PHYSICAL DATA (updated 2025-Jun-02):
Vol. mean radius (km) = 3389.92+-0.04 Density (g/cm^3) = 3.933(5+-4)
Mass x10^23 (kg) = 6.4171 Flattening, f = 1/169.779
Volume (x10^10 km^3) = 16.318 Equatorial radius (km)= 3396.19
Sidereal rot. period = 24.622962 hr Sid. rot. rate, rad/s = 0.0000708822
Mean solar day (sol) = 88775.24415 s Polar gravity m/s^2 = 3.758
Core radius (km) = ~1700 Equ. gravity m/s^2 = 3.71
Geometric Albedo = 0.150
GM (km^3/s^2) = 42828.375662 Mass ratio (Sun/Mars) = 3098703.59
GM 1-sigma (km^3/s^2) = +- 0.00028 Mass of atmosphere, kg= ~ 2.5 x 10^16
Mean temperature (K) = 210 Atmos. pressure (bar) = 0.0056
Obliquity to orbit = 25.19 deg Max. angular diam. = 17.9"
Mean sidereal orb per = 1.88081578 y Visual mag. V(1,0) = -1.52
Mean sidereal orb per = 686.98 d Orbital speed, km/s = 24.13
Hill's sphere rad. Rp = 319.8 Escape speed, km/s = 5.027
Perihelion Aphelion Mean
Solar Constant (W/m^2) 717 493 589
Maximum Planetary IR (W/m^2) 470 315 390
Minimum Planetary IR (W/m^2) 30 30 30
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 15:51:53 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Mars (499) {source: mar099}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X =-5.216858665681381E-01 Y = 1.525234576802456E+00 Z = 4.475559803760917E-02
VX=-1.271183490340250E-02 VY=-3.338839586395265E-03 VZ= 2.417788175776839E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X =-5.216946942223875E-01 Y = 1.525232258137904E+00 Z = 4.475576593880412E-02
VX=-1.271180933472031E-02 VY=-3.338914323653169E-03 VZ= 2.417766240577524E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,124 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: April 12, 2021 Mercury 199 / 1
PHYSICAL DATA (updated 2024-Mar-04):
Vol. Mean Radius (km) = 2439.4+-0.1 Density (g cm^-3) = 5.427
Mass x10^23 (kg) = 3.302 Volume (x10^10 km^3) = 6.085
Sidereal rot. period = 58.6463 d Sid. rot. rate (rad/s)= 0.00000124001
Mean solar day = 175.9421 d Core radius (km) = ~1600
Geometric Albedo = 0.106 Surface emissivity = 0.77+-0.06
GM (km^3/s^2) = 22031.86855 Equatorial radius, Re = 2440.53 km
GM 1-sigma (km^3/s^2) = Mass ratio (Sun/plnt) = 6023682
Mom. of Inertia = 0.33 Equ. gravity m/s^2 = 3.701
Atmos. pressure (bar) = < 5x10^-15 Max. angular diam. = 11.0"
Mean Temperature (K) = 440 Visual mag. V(1,0) = -0.42
Obliquity to orbit[1] = 2.11' +/- 0.1' Hill's sphere rad. Rp = 94.4
Sidereal orb. per. = 0.2408467 y Mean Orbit vel. km/s = 47.362
Sidereal orb. per. = 87.969257 d Escape vel. km/s = 4.435
Perihelion Aphelion Mean
Solar Constant (W/m^2) 14462 6278 9126
Maximum Planetary IR (W/m^2) 12700 5500 8000
Minimum Planetary IR (W/m^2) 6 6 6
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:24 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Mercury (199) {source: DE441}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X =-3.873030085256687E-01 Y =-1.617241946342014E-01 Z = 2.230772540124238E-02
VX= 5.024430196457658E-03 VY=-2.474345331076241E-02 VZ=-2.482923861184285E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X =-3.872995189658449E-01 Y =-1.617413774324715E-01 Z = 2.230600112712438E-02
VX= 5.025502090388155E-03 VY=-2.474300570104969E-02 VZ=-2.482985597610005E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,117 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 26, 2022 Mimas / (Saturn) 601
http://ssd.jpl.nasa.gov/?sat_phys_par
http://ssd.jpl.nasa.gov/?sat_elem
SATELLITE PHYSICAL PROPERTIES:
Mean Radius (km) = 198.8 +- 1.5 Density (g/cm^3) = 1.152 +- 0.027
Mass (10^19 kg) = 3.75 Geometric Albedo = 0.6
GM (km^3/s^2) = 2.503489 V(1,0) = +3.3
SATELLITE ORBITAL DATA (mean elements referred to local Laplace plane):
Semi-major axis, a (km) = 185.54(10^3) Orbital period = 0.9424218 d
Eccentricity, e = 0.0196 Rotational period = Synchronous
Inclination, i (deg) = 1.572
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:43 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Mimas (601) {source: sat441l}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 9.462113317387443E+00 Y =-1.764120396234732E+00 Z =-3.462575454806998E-01
VX=-3.600569225193193E-03 VY= 1.195945377622506E-02 VZ=-3.321658418910402E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 9.462110805168413E+00 Y =-1.764112096667343E+00 Z =-3.462598478664664E-01
VX=-3.634605921905340E-03 VY= 1.194327556531391E-02 VZ=-3.309200303182580E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,115 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 29, 2025 Miranda / (Uranus) 705
SATELLITE PHYSICAL PROPERTIES:
Radius (km) = 240x234.2x232.9 Density (g cm^-3) = 1.18 +- 0.05
GM (km^3/s^2) = 4.3 +- 0.2 Geometric Albedo = 0.27
V(1,0) = +3.6
SATELLITE ORBITAL DATA (mean elements referred to equatorial plane & IAU pole)
Semi-major axis, a (km) = 129.8 (10^3) Orbital period = 1.413 d
Eccentricity, e = 0.0027 Rotational period = Synchronous
Inclination, i (deg) = 175.78
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:49 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Miranda (705) {source: ura183_merged}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.110338075481133E+01 Y = 1.609470886437212E+01 Z =-8.339848717695617E-02
VX= 2.787135511093017E-04 VY= 1.302160355796409E-03 VZ= 1.366210183434322E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.110338094954377E+01 Y = 1.609470976757570E+01 Z =-8.339754224366069E-02
VX= 2.821101872080506E-04 VY= 1.299067156991778E-03 VZ= 1.355195633050134E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,5 +1,3 @@
curl -s "https://ssd.jpl.nasa.gov/api/horizons.api?format=text&COMMAND=%27301%27&CENTER=%27%40sun%27&EPHEM_TYPE=%27VECTORS%27&OUT_UNITS=%27AU-D%27&START_TIME=%272000-01-01%2012:00%27&STOP_TIME=%272000-01-01%2012:01%27&STEP_SIZE=%271%20m%27&VEC_TABLE=2&REF_PLANE=%27ECLIPTIC%27&REF_SYSTEM=%27J2000%27"
API VERSION: 1.2 API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API API SOURCE: NASA/JPL Horizons API
@ -29,14 +27,14 @@ API SOURCE: NASA/JPL Horizons API
******************************************************************************* *******************************************************************************
Ephemeris / API_USER Wed Aug 13 04:01:18 2025 Pasadena, USA / Horizons Ephemeris / API_USER Thu Aug 14 15:51:51 2025 Pasadena, USA / Horizons
******************************************************************************* *******************************************************************************
Target body name: Moon (301) {source: DE441} Target body name: Moon (301) {source: DE441}
Center body name: Sun (10) {source: DE441} Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER Center-site name: BODY CENTER
******************************************************************************* *******************************************************************************
Start time : A.D. 2000-Jan-01 12:00:00.0000 TDB Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2000-Jan-01 12:01:00.0000 TDB Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes Step-size : 1 minutes
******************************************************************************* *******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)} Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
@ -53,12 +51,12 @@ JDTDB
VX VY VZ VX VY VZ
******************************************************************************* *******************************************************************************
$$SOE $$SOE
2451545.000000000 = A.D. 2000-Jan-01 12:00:00.0000 TDB 2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X =-1.790843809223965E-01 Y = 9.654035607264573E-01 Z = 2.383726922995396E-04 X =-1.776670337217189E-01 Y = 9.646511868801392E-01 Z =-2.560710414773878E-04
VX=-1.683595459141215E-02 VY=-3.580960720855671E-03 VZ=-6.540550604528720E-06 VX=-1.666610342674751E-02 VY=-2.935662211368250E-03 VZ= 2.214641479437884E-05
2451545.000694444 = A.D. 2000-Jan-01 12:01:00.0000 TDB 2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X =-1.790960725225740E-01 Y = 9.654010738956424E-01 Z = 2.383681475637660E-04 X =-1.776786074043311E-01 Y = 9.646491481829632E-01 Z =-2.560556593596988E-04
VX=-1.683585392087164E-02 VY=-3.581112024431721E-03 VZ=-6.548288423082821E-06 VX=-1.666610249864482E-02 VY=-2.935785656373790E-03 VZ= 2.215408427478499E-05
$$EOE $$EOE
******************************************************************************* *******************************************************************************

View File

@ -0,0 +1,125 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: April 22, 2021 Neptune 899
PHYSICAL DATA (update 2021-May-03):
Mass x10^24 (kg) = 102.409 Density (g/cm^3) = 1.638
Equat. radius (1 bar) = 24766+-15 km Volume, 10^10 km^3 = 6254
Vol. mean radius (km) = 24624+-21 Polar radius (km) = 24342+-30
Geometric Albedo = 0.41 Flattening = 0.0171
Sid. rot. period (III)= 16.11+-0.01 hr Sid. rot. rate (rad/s) = 0.000108338
Mean solar day, h =~16.11 h
GM (km^3/s^2) = 6835099.97 GM 1-sigma (km^3/s^2) = +-10
Equ. grav, ge (m/s^2) = 11.15 Pol. grav, gp (m/s^2) = 11.41+-0.03
Visual magnitude V(1,0)= -6.87
Vis. mag. (opposition)= +7.84 Obliquity to orbit = 28.32 deg
Sidereal orbit period = 164.788501027 y Sidereal orbit period = 60189 d
Mean daily motion = 0.006020076dg/d Mean orbit velocity = 5.43 km/s
Atmos. temp. (1 bar) = 72+-2 K Escape speed (1 bar) = 23.5 km/s
Aroche(ice)/Rp = 2.98 Hill's sphere rad., Rp = 4700
Perihelion Aphelion Mean
Solar Constant (W/m^2) 1.54 1.49 1.51
Maximum Planetary IR (W/m^2) 0.52 0.52 0.52
Minimum Planetary IR (W/m^2) 0.52 0.52 0.52
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 15:51:58 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Neptune (899) {source: nep097_merged}
Center body name: Sun (10) {source: nep097_merged}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 2.987992735576156E+01 Y =-6.341879950443392E-01 Z =-6.754997950415415E-01
VX= 3.941595250081164E-05 VY= 3.160389775728832E-03 VZ=-6.636996572427530E-05
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 2.987992738313355E+01 Y =-6.341858003292957E-01 Z =-6.754998411317725E-01
VX= 3.941539715732043E-05 VY= 3.160389549672231E-03 VZ=-6.636990015457822E-05
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,115 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 29, 2025 Oberon / (Uranus) 704
SATELLITE PHYSICAL PROPERTIES:
Radius (km) = 761.4 +- 2.6 Density (g cm^-3) = 1.66 +- 0.05
GM (km^3/s^2) = 205.34 +- 5.8 Geometric Albedo = 0.24
V(1,0) = +1.23
SATELLITE ORBITAL DATA (mean elements referred to equatorial plane & IAU pole)
Semi-major axis, a (km) = 582.6 (10^3) Orbital period = 13.463 d
Eccentricity, e = 0.0008 Rotational period = Synchronous
Inclination, i (deg) = 179.90
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:45 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Oberon (704) {source: ura183_merged}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.110301190463219E+01 Y = 1.609515778477002E+01 Z =-8.040210462613612E-02
VX=-1.519780917379062E-03 VY= 1.720169702110850E-03 VZ= 3.926675849694972E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.110301084926093E+01 Y = 1.609515897929689E+01 Z =-8.040183213898029E-02
VX=-1.519688343927354E-03 VY= 1.720067705450287E-03 VZ= 3.920954185698925E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,115 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jun 02, 2025 Phobos / (Mars) 401
SATELLITE PHYSICAL PROPERTIES:
Radius (km) = 13.1 x11.1 x9.3 Density (g cm^-3) = 1.90 +- 0.08
Mass (10^20 kg ) = 1.08 (10^-4) Geometric Albedo = 0.06
(+- 0.1) V(1,0) = +11.8
SATELLITE ORBITAL DATA:
Semi-major axis, a (km) = 9.3772(10^3) Orbital period = 0.319 d
Eccentricity, e = 0.0151 Rotational period = Synchronous
Inclination, i (deg) = 1.082
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:27 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Phobos (401) {source: mar099}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X =-5.216607506283159E-01 Y = 1.525290094552813E+00 Z = 4.474552444674667E-02
VX=-1.371531677510715E-02 VY=-2.797359927923991E-03 VZ= 7.604209362929195E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X =-5.216702775783473E-01 Y = 1.525288146474805E+00 Z = 4.474605348954465E-02
VX=-1.372226672058481E-02 VY=-2.813122639161171E-03 VZ= 7.632054629505637E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,117 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 26, 2022 Rhea / (Saturn) 605
http://ssd.jpl.nasa.gov/?sat_phys_par
http://ssd.jpl.nasa.gov/?sat_elem
SATELLITE PHYSICAL PROPERTIES:
Mean Radius (km) = 764.5 +- 2 Density (g/cm^3) = 1.233 +- 0.010
Mass (10^19 kg) = 230.9 Geometric Albedo = 0.6
GM (km^3/s^2) = 153.94 +- 0.16 V(1,0) = +0.1
SATELLITE ORBITAL DATA (mean values referred to local Laplace plane):
Semi-major axis, a (km) = 527.07(10^3) Orbital period = 4.518 d
Eccentricity, e = 0.001 Rotational period = Synchronous
Inclination, i (deg) = 0.331
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:36 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Rhea (605) {source: sat441l}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 9.463441058546145E+00 Y =-1.766997606737125E+00 Z =-3.448366300385151E-01
VX= 4.307393238751094E-03 VY= 8.273257376182423E-03 VZ=-1.932435874857194E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 9.463444048680545E+00 Y =-1.766991860305545E+00 Z =-3.448379724938126E-01
VX= 4.304193275713166E-03 VY= 8.276465140546280E-03 VZ=-1.933835100794230E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,125 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: January 26, 2022 Saturn 699
PHYSICAL DATA:
Mass x10^26 (kg) = 5.6834 Density (g/cm^3) = 0.687+-.001
Equat. radius (1 bar) = 60268+-4 km Polar radius (km) = 54364+-10
Vol. Mean Radius (km) = 58232+-6 Flattening = 0.09796
Geometric Albedo = 0.47 Rocky core mass (Mc/M) = 0.1027
Sid. rot. period (III)= 10h 39m 22.4s Sid. rot. rate (rad/s) = 0.000163785
Mean solar day, hrs =~10.656
GM (km^3/s^2) = 37931206.234 GM 1-sigma (km^3/s^2) = +- 98
Equ. grav, ge (m/s^2) = 10.44 Pol. grav, gp (m/s^2) = 12.14+-0.01
Vis. magnitude V(1,0) = -8.88
Vis. mag. (opposition)= +0.67 Obliquity to orbit = 26.73 deg
Sidereal orbit period = 29.447498 yr Sidereal orbit period = 10755.698 d
Mean daily motion = 0.0334979 deg/d Mean orbit velocity = 9.68 km/s
Atmos. temp. (1 bar) = 134+-4 K Escape speed, km/s = 35.5
Aroche(ice)/Rp = 2.71 Hill's sphere rad. Rp = 1100
Perihelion Aphelion Mean
Solar Constant (W/m^2) 16.8 13.6 15.1
Maximum Planetary IR (W/m^2) 4.7 4.5 4.6
Minimum Planetary IR (W/m^2) 4.7 4.5 4.6
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 15:51:55 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Saturn (699) {source: sat441l}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 9.461067271500818E+00 Y =-1.764614720843175E+00 Z =-3.458764004169705E-01
VX= 7.093807804551229E-04 VY= 5.475097536527790E-03 VZ=-1.232345969963958E-04
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 9.461067764125684E+00 Y =-1.764610918691946E+00 Z =-3.458764859965446E-01
VX= 7.093788338554797E-04 VY= 5.475098004312488E-03 VZ=-1.232345764512067E-04
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -1,5 +1,3 @@
curl -s "https://ssd.jpl.nasa.gov/api/horizons.api?format=text&COMMAND=%27%40sun%27&CENTER=%27%40sun%27&EPHEM_TYPE=%27VECTORS%27&OUT_UNITS=%27AU-D%27&START_TIME=%272000-01-01%2012:00%27&STOP_TIME=%272000-01-01%2012:01%27&STEP_SIZE=%271%20m%27&VEC_TABLE=2&REF_PLANE=%27ECLIPTIC%27&REF_SYSTEM=%27J2000%27"
API VERSION: 1.2 API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API API SOURCE: NASA/JPL Horizons API
@ -28,14 +26,14 @@ API SOURCE: NASA/JPL Horizons API
******************************************************************************* *******************************************************************************
Ephemeris / API_USER Wed Aug 13 04:05:18 2025 Pasadena, USA / Horizons Ephemeris / API_USER Thu Aug 14 15:51:49 2025 Pasadena, USA / Horizons
******************************************************************************* *******************************************************************************
Target body name: Sun (10) {source: DE441} Target body name: Sun (10) {source: DE441}
Center body name: Sun (10) {source: DE441} Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER Center-site name: BODY CENTER
******************************************************************************* *******************************************************************************
Start time : A.D. 2000-Jan-01 12:00:00.0000 TDB Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2000-Jan-01 12:01:00.0000 TDB Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes Step-size : 1 minutes
******************************************************************************* *******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)} Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
@ -52,10 +50,10 @@ JDTDB
VX VY VZ VX VY VZ
******************************************************************************* *******************************************************************************
$$SOE $$SOE
2451545.000000000 = A.D. 2000-Jan-01 12:00:00.0000 TDB 2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 0.000000000000000E+00 Y = 0.000000000000000E+00 Z = 0.000000000000000E+00 X = 0.000000000000000E+00 Y = 0.000000000000000E+00 Z = 0.000000000000000E+00
VX= 0.000000000000000E+00 VY= 0.000000000000000E+00 VZ= 0.000000000000000E+00 VX= 0.000000000000000E+00 VY= 0.000000000000000E+00 VZ= 0.000000000000000E+00
2451545.000694444 = A.D. 2000-Jan-01 12:01:00.0000 TDB 2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 0.000000000000000E+00 Y = 0.000000000000000E+00 Z = 0.000000000000000E+00 X = 0.000000000000000E+00 Y = 0.000000000000000E+00 Z = 0.000000000000000E+00
VX= 0.000000000000000E+00 VY= 0.000000000000000E+00 VZ= 0.000000000000000E+00 VX= 0.000000000000000E+00 VY= 0.000000000000000E+00 VZ= 0.000000000000000E+00
$$EOE $$EOE

View File

@ -0,0 +1,117 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 26, 2022 Tethys / (Saturn) 603
http://ssd.jpl.nasa.gov/?sat_phys_par
http://ssd.jpl.nasa.gov/?sat_elem
SATELLITE PHYSICAL PROPERTIES:
Mean Radius (km) = 536.3 +- 1.5 Density (g/cm^3) = 0.956+- 0.008
Mass (10^19 kg) = 61.76 +- 0.11 Geometric Albedo = 0.80
GM (km^3/s^2) = 41.21 +- 0.007 V(1,0) = +0.7
SATELLITE ORBITAL DATA (mean values with respect to local Laplace plane):
Semi-major axis, a (km)= 294.670(10^3) Orbital period = 1.888 d
Eccentricity, e = 0.0001 Rotational period = Synchronous
Inclination, i (deg) = 1.091
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:40 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Tethys (603) {source: sat441l}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 9.463028141754283E+00 Y =-1.764725184828637E+00 Z =-3.460263238634043E-01
VX= 8.124741088132637E-04 VY= 1.132977234261396E-02 VZ=-3.072248079372077E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 9.463028700733389E+00 Y =-1.764717316639481E+00 Z =-3.460284569666105E-01
VX= 7.973856311297915E-04 VY= 1.133060721568177E-02 VZ=-3.071086528742641E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,117 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 26, 2022 Titan / (Saturn) 606
http://ssd.jpl.nasa.gov/?sat_phys_par
http://ssd.jpl.nasa.gov/?sat_elem
SATELLITE PHYSICAL PROPERTIES:
Mean Radius (km) = 2575.5 +- 2.0 Density (g/cm^3) = 1.880 +- 0.004
Mass (10^19 kg) = 13455.3 Geometric Albedo = 0.2
GM (km^3/s^2) = 8978.14 +- 0.06 V(1,0) = -1.2
SATELLITE ORBITAL DATA:
Semi-major axis, a (km)= 1221.87 (10^3) Orbital period = 15.945421 d
Eccentricity, e = 0.0288 Rotational period =
Inclination, i (deg) = 0.28
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:35 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Titan (606) {source: sat441l}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 9.468440328490537E+00 Y =-1.762284834421733E+00 Z =-3.478122131916790E-01
VX=-4.611400435334967E-04 VY= 8.260265884102586E-03 VZ=-1.443082816825538E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 9.468440007956742E+00 Y =-1.762279098219692E+00 Z =-3.478132152545299E-01
VX=-4.619972666944876E-04 VY= 8.259995958078317E-03 VZ=-1.442858176376882E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,115 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 29, 2025 Titania / (Uranus) 703
SATELLITE PHYSICAL PROPERTIES:
Radius (km) = 788.9 +- 1.8 Density (g cm^-3) = 1.65 +- 0.03
GM (km^3/s^2) = 222.8 +- 4.1 Geometric Albedo = 0.27
V(1,0) = +1.02
SATELLITE ORBITAL DATA (mean elements referred to equatorial plane & IAU pole)
Semi-major axis, a (km) = 435.8 (10^3) Orbital period = 8.706 d
Eccentricity, e = 0.0022 Rotational period = Synchronous
Inclination, i (deg) = 179.90
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:44 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Titania (703) {source: ura183_merged}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.110510884778205E+01 Y = 1.609382177197045E+01 Z =-8.661833178512783E-02
VX=-5.032495225759578E-03 VY= 2.280002002691279E-03 VZ=-1.088327315015861E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.110510535280710E+01 Y = 1.609382335538846E+01 Z =-8.661908726294103E-02
VX=-5.033032537876168E-03 VY= 2.280241869921879E-03 VZ=-1.087448734649130E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,117 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Apr 22, 2021 Triton / (Neptune) 801
SATELLITE PHYSICAL PROPERTIES:
Mean radius (km) = 1352.6 +- 2.4 Mean dens (g cm^-3)= 2.065 +-0.011
GM (km^3/s^2) = 1428.495 +- 0.62 Geometric Albedo = 0.7
V(1,0) = -1.24
SATELLITE ORBITAL DATA (mean values wrt Laplace plane):
Semi-major axis, a (km) = 354800 Orbital period = 5.876994 d
Eccentricity, e = 0.000 Rotational period = Synchronous
Inclination, i (deg) = 157.3
Fit to all reported measurements through 2020 (Voyager 2, ground, HST)
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:50 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Triton (801) {source: nep097_merged}
Center body name: Sun (10) {source: nep097_merged}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 2.987802053077272E+01 Y =-6.355569689698364E-01 Z =-6.751627943073906E-01
VX=-6.787804924900204E-04 VY= 4.636375429506899E-03 VZ= 1.865945736548040E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 2.987802005992279E+01 Y =-6.355537488875286E-01 Z =-6.751614986047274E-01
VX=-6.772672129266950E-04 VY= 4.637461481841197E-03 VZ= 1.865677756098451E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,115 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: Jan 29, 2025 Umbriel / (Uranus) 702
SATELLITE PHYSICAL PROPERTIES:
Radius (km) = 584.7 +- 2.8 Density (g cm^-3) = 1.52 +- 0.04
GM (km^3/s^2) = 85.40 +- 1.9 Geometric Albedo = 0.18
V(1,0) = +2.10
SATELLITE ORBITAL DATA (mean elements referred to equatorial plane & IAU pole):
Semi-major axis, a (km) = 266.0 (10^3) Orbital period = 4.144 d
Eccentricity, e = 0.0050 Rotational period = Synchronous
Inclination, i (deg) = 179.64
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:48 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Umbriel (702) {source: ura183_merged}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.110253678329407E+01 Y = 1.609490555702174E+01 Z =-8.286998450094619E-02
VX=-1.219602563560983E-03 VY= 1.849034126664038E-03 VZ= 1.801100761916168E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.110253593696041E+01 Y = 1.609490684083643E+01 Z =-8.286873448230965E-02
VX=-1.217838766094139E-03 VY= 1.848352214682835E-03 VZ= 1.798952584612123E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,125 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: January 29, 2025 Uranus 799
PHYSICAL DATA:
Mass x10^24 (kg) = 86.813 Density (g/cm^3) = 1.271
Equat. radius (1 bar) = 25559+-4 km Polar radius (km) = 24973+-20
Vol. Mean Radius (km) = 25362+-12 Flattening = 0.02293
Geometric Albedo = 0.51
Sid. rot. period (III)= 17.24+-0.01 h Sid. rot. rate (rad/s) = -0.000101237
Mean solar day, h =~17.24 Rocky core mass (Mc/M) = 0.0012
GM (km^3/s^2) = 5793950.6103 GM 1-sigma (km^3/s^2) = +-4.3
Equ. grav, ge (m/s^2) = 8.87 Pol. grav, gp (m/s^2) = 9.19+-0.02
Visual magnitude V(1,0)= -7.11
Vis. mag. (opposition)= +5.52 Obliquity to orbit = 97.77 deg
Sidereal orbit period = 84.0120465 y Sidereal orbit period = 30685.4 d
Mean daily motion = 0.01176904 dg/d Mean orbit velocity = 6.8 km/s
Atmos. temp. (1 bar) = 76+-2 K Escape speed, km/s = 21.3
Aroche(ice)/Rp = 2.20 Hill's sphere rad., Rp = 2700
Perihelion Aphelion Mean
Solar Constant (W/m^2) 4.09 3.39 3.71
Maximum Planetary IR (W/m^2) 0.72 0.55 0.63
Minimum Planetary IR (W/m^2) 0.72 0.55 0.63
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 15:51:56 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Uranus (799) {source: ura183_merged}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 1.110362881512566E+01 Y = 1.609448391218202E+01 Z =-8.419833258524990E-02
VX=-3.273728238819980E-03 VY= 2.053528328895527E-03 VZ= 5.008589052969062E-05
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 1.110362654170318E+01 Y = 1.609448533824320E+01 Z =-8.419829780338954E-02
VX=-3.273728502372206E-03 VY= 2.053527864185684E-03 VZ= 5.008586714126605E-05
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

View File

@ -0,0 +1,124 @@
API VERSION: 1.2
API SOURCE: NASA/JPL Horizons API
*******************************************************************************
Revised: April 12, 2021 Venus 299 / 2
PHYSICAL DATA (updated 2020-Oct-19):
Vol. Mean Radius (km) = 6051.84+-0.01 Density (g/cm^3) = 5.204
Mass x10^23 (kg) = 48.685 Volume (x10^10 km^3) = 92.843
Sidereal rot. period = 243.018484 d Sid. Rot. Rate (rad/s)= -0.00000029924
Mean solar day = 116.7490 d Equ. gravity m/s^2 = 8.870
Mom. of Inertia = 0.33 Core radius (km) = ~3200
Geometric Albedo = 0.65 Potential Love # k2 = ~0.25
GM (km^3/s^2) = 324858.592 Equatorial Radius, Re = 6051.893 km
GM 1-sigma (km^3/s^2) = +-0.006 Mass ratio (Sun/Venus)= 408523.72
Atmos. pressure (bar) = 90 Max. angular diam. = 60.2"
Mean Temperature (K) = 735 Visual mag. V(1,0) = -4.40
Obliquity to orbit = 177.3 deg Hill's sphere rad.,Rp = 167.1
Sidereal orb. per., y = 0.61519726 Orbit speed, km/s = 35.021
Sidereal orb. per., d = 224.70079922 Escape speed, km/s = 10.361
Perihelion Aphelion Mean
Solar Constant (W/m^2) 2759 2614 2650
Maximum Planetary IR (W/m^2) 153 153 153
Minimum Planetary IR (W/m^2) 153 153 153
*******************************************************************************
*******************************************************************************
Ephemeris / API_USER Thu Aug 14 16:19:26 2025 Pasadena, USA / Horizons
*******************************************************************************
Target body name: Venus (299) {source: DE441}
Center body name: Sun (10) {source: DE441}
Center-site name: BODY CENTER
*******************************************************************************
Start time : A.D. 2025-Jan-01 00:00:00.0000 TDB
Stop time : A.D. 2025-Jan-01 00:01:00.0000 TDB
Step-size : 1 minutes
*******************************************************************************
Center geodetic : 0.0, 0.0, 0.0 {E-lon(deg),Lat(deg),Alt(km)}
Center cylindric: 0.0, 0.0, 0.0 {E-lon(deg),Dxy(km),Dz(km)}
Center radii : 695700.0, 695700.0, 695700.0 km {Equator_a, b, pole_c}
Output units : AU-D
Calendar mode : Mixed Julian/Gregorian
Output type : GEOMETRIC cartesian states
Output format : 2 (position and velocity)
Reference frame : Ecliptic of J2000.0
*******************************************************************************
JDTDB
X Y Z
VX VY VZ
*******************************************************************************
$$SOE
2460676.500000000 = A.D. 2025-Jan-01 00:00:00.0000 TDB
X = 4.534187654737982E-01 Y = 5.622160792960551E-01 Z =-1.844136025242647E-02
VX=-1.580627428004959E-02 VY= 1.261006264179427E-02 VZ= 1.085217883057661E-03
2460676.500694444 = A.D. 2025-Jan-01 00:01:00.0000 TDB
X = 4.534077888086579E-01 Y = 5.622248361776391E-01 Z =-1.844060662540785E-02
VX=-1.580652132279067E-02 VY= 1.260975631877725E-02 VZ= 1.085227930639264E-03
$$EOE
*******************************************************************************
TIME
Barycentric Dynamical Time ("TDB" or T_eph) output was requested. This
continuous coordinate time is equivalent to the relativistic proper time
of a clock at rest in a reference frame co-moving with the solar system
barycenter but outside the system's gravity well. It is the independent
variable in the solar system relativistic equations of motion.
TDB runs at a uniform rate of one SI second per second and is independent
of irregularities in Earth's rotation.
CALENDAR SYSTEM
Mixed calendar mode was active such that calendar dates after AD 1582-Oct-15
(if any) are in the modern Gregorian system. Dates prior to 1582-Oct-5 (if any)
are in the Julian calendar system, which is automatically extended for dates
prior to its adoption on 45-Jan-1 BC. The Julian calendar is useful for
matching historical dates. The Gregorian calendar more accurately corresponds
to the Earth's orbital motion and seasons. A "Gregorian-only" calendar mode is
available if such physical events are the primary interest.
REFERENCE FRAME AND COORDINATES
Ecliptic at the standard reference epoch
Reference epoch: J2000.0
X-Y plane: adopted Earth orbital plane at the reference epoch
Note: IAU76 obliquity of 84381.448 arcseconds wrt ICRF X-Y plane
X-axis : ICRF
Z-axis : perpendicular to the X-Y plane in the directional (+ or -) sense
of Earth's north pole at the reference epoch.
Symbol meaning [1 au= 149597870.700 km, 1 day= 86400.0 s]:
JDTDB Julian Day Number, Barycentric Dynamical Time
X X-component of position vector (au)
Y Y-component of position vector (au)
Z Z-component of position vector (au)
VX X-component of velocity vector (au/day)
VY Y-component of velocity vector (au/day)
VZ Z-component of velocity vector (au/day)
ABERRATIONS AND CORRECTIONS
Geometric state vectors have NO corrections or aberrations applied.
Computations by ...
Solar System Dynamics Group, Horizons On-Line Ephemeris System
4800 Oak Grove Drive, Jet Propulsion Laboratory
Pasadena, CA 91109 USA
General site: https://ssd.jpl.nasa.gov/
Mailing list: https://ssd.jpl.nasa.gov/email_list.html
System news : https://ssd.jpl.nasa.gov/horizons/news.html
User Guide : https://ssd.jpl.nasa.gov/horizons/manual.html
Connect : browser https://ssd.jpl.nasa.gov/horizons/app.html#/x
API https://ssd-api.jpl.nasa.gov/doc/horizons.html
command-line telnet ssd.jpl.nasa.gov 6775
e-mail/batch https://ssd.jpl.nasa.gov/ftp/ssd/horizons_batch.txt
scripts https://ssd.jpl.nasa.gov/ftp/ssd/SCRIPTS
Author : Jon.D.Giorgini@jpl.nasa.gov
*******************************************************************************

File diff suppressed because it is too large Load Diff

BIN
assets/models/ariel.glb Normal file

Binary file not shown.

BIN
assets/models/callisto.glb Normal file

Binary file not shown.

BIN
assets/models/ceres.glb Normal file

Binary file not shown.

BIN
assets/models/charon.glb Normal file

Binary file not shown.

BIN
assets/models/deimos.glb Normal file

Binary file not shown.

BIN
assets/models/dione.glb Normal file

Binary file not shown.

BIN
assets/models/earth.glb Normal file

Binary file not shown.

BIN
assets/models/enceladus.glb Normal file

Binary file not shown.

BIN
assets/models/eris.glb Normal file

Binary file not shown.

BIN
assets/models/europa.glb Normal file

Binary file not shown.

BIN
assets/models/ganymede.glb Normal file

Binary file not shown.

BIN
assets/models/hubble.glb Normal file

Binary file not shown.

BIN
assets/models/iapetus.glb Normal file

Binary file not shown.

BIN
assets/models/io.glb Normal file

Binary file not shown.

BIN
assets/models/iss.glb Normal file

Binary file not shown.

BIN
assets/models/jupiter.glb Normal file

Binary file not shown.

BIN
assets/models/makemake.glb Normal file

Binary file not shown.

BIN
assets/models/mars.glb Normal file

Binary file not shown.

BIN
assets/models/mercury.glb Normal file

Binary file not shown.

BIN
assets/models/mimas.glb Normal file

Binary file not shown.

BIN
assets/models/miranda.glb Normal file

Binary file not shown.

BIN
assets/models/moon.glb Normal file

Binary file not shown.

BIN
assets/models/neptune.glb Normal file

Binary file not shown.

BIN
assets/models/oberon.glb Normal file

Binary file not shown.

BIN
assets/models/phobos.glb Normal file

Binary file not shown.

BIN
assets/models/pluto.glb Normal file

Binary file not shown.

BIN
assets/models/rhea.glb Normal file

Binary file not shown.

BIN
assets/models/saturn.glb Normal file

Binary file not shown.

BIN
assets/models/sun.glb Normal file

Binary file not shown.

BIN
assets/models/tethys.glb Normal file

Binary file not shown.

BIN
assets/models/titan.glb Normal file

Binary file not shown.

BIN
assets/models/titania.glb Normal file

Binary file not shown.

BIN
assets/models/triton.glb Normal file

Binary file not shown.

BIN
assets/models/umbriel.glb Normal file

Binary file not shown.

BIN
assets/models/uranus.glb Normal file

Binary file not shown.

BIN
assets/models/venus.glb Normal file

Binary file not shown.

BIN
assets/models/voyager.glb Normal file

Binary file not shown.

30
assets/scale.txt Normal file
View File

@ -0,0 +1,30 @@
Applied scale to Deimos: 3.572769492e-5, 2.336041507e-5, 2.748284533e-5
Applied scale to Umbriel: 3.375767119e-5, 3.375767119e-5, 3.375767119e-5
Applied scale to Phobos: 3.111071419e-5, 2.177749957e-5, 2.728170512e-5
Applied scale to Titania: 4.554716361e-5, 4.554716361e-5, 4.554716361e-5
Applied scale to Oberon: 4.395945143e-5, 4.395945143e-5, 4.395945143e-5
Applied scale to Mercury: 1.409040560e-4, 1.407730015e-4, 1.409040560e-4
Applied scale to Callisto: 1.391587430e-4, 1.391587430e-4, 1.391587430e-4
Applied scale to Venus: 3.494008561e-4, 3.494008561e-4, 3.494008561e-4
Applied scale to Uranus: 1.486925757e-3, 1.452834462e-3, 1.486925757e-3
Applied scale to Ariel: 3.354982618e-5, 3.335352449e-5, 3.336507143e-5
Applied scale to Europa: 9.021675214e-5, 9.003777086e-5, 9.008396592e-5
Applied scale to Pluto: 6.860653230e-5, 6.860653230e-5, 6.860653230e-5
Applied scale to Enceladus: 1.481480831e-5, 1.433560737e-5, 1.451458593e-5
Applied scale to Dione: 3.252791430e-5, 3.230852235e-5, 3.240667138e-5
Applied scale to Titan: 1.486763649e-4, 1.486371038e-4, 1.486549882e-4
Applied scale to Miranda: 1.387950124e-5, 1.344648808e-5, 1.352154413e-5
Applied scale to Neptune: 1.437890343e-3, 1.413329272e-3, 1.437890343e-3
Applied scale to Moon: 1.003505604e-4, 1.003505604e-4, 1.003505604e-4
Applied scale to Rhea: 4.416729644e-5, 4.401718616e-5, 4.405760046e-5
Applied scale to Sol: 4.016625881e-2, 4.016625881e-2, 4.016625881e-2
Applied scale to Iapetus: 4.305300899e-5, 4.111311500e-5, 4.305300899e-5
Applied scale to Jupiter: 4.216764122e-3, 3.943203948e-3, 4.216764122e-3
Applied scale to Ganymede: 1.519124053e-4, 1.519124053e-4, 1.519124053e-4
Applied scale to Earth: 3.686534474e-4, 3.674174368e-4, 3.686534474e-4
Applied scale to Saturn: 1.828302280e-3, 1.649197191e-3, 1.828302280e-3
Applied scale to Mimas: 3.022084638e-5, 2.771941035e-5, 2.860654604e-5
Applied scale to Triton: 7.809240196e-5, 7.809240196e-5, 7.809240196e-5
Applied scale to Mars: 1.964640105e-4, 1.953076135e-4, 1.964640105e-4
Applied scale to Tethys: 3.129428660e-5, 3.059098162e-5, 3.070722960e-5
Applied scale to Io: 1.056204637e-4, 1.048294944e-4, 1.050431092e-4

154
examples/big_space.rs Normal file
View File

@ -0,0 +1,154 @@
//! This example demonstrates what floating point error in rendering looks like. You can press
//! space bar to smoothly switch between enabling and disabling the floating origin.
//!
//! Instead of disabling the plugin outright, this example simply moves the floating origin
//! independently of the camera, which is equivalent to what would happen when moving far from the
//! origin when not using this plugin.
use bevy::prelude::*;
use big_space::prelude::*;
fn main() {
App::new()
.add_plugins((
DefaultPlugins.build().disable::<TransformPlugin>(),
BigSpaceDefaultPlugins,
))
.add_systems(Startup, (setup_scene, setup_ui))
.add_systems(Update, (rotator_system, toggle_plugin))
.run();
}
/// You can put things really, really far away from the origin. The distance we use here is actually
/// quite small, because we want the mesh to still be visible when the floating origin is far from
/// the camera. If you go much further than this, the mesh will simply disappear in a *POOF* of
/// floating point error when we disable this plugin.
///
/// This plugin can function much further from the origin without any issues. Try setting this to:
/// `10_000_000_000_000_000` with the default i64 feature, or
/// `10_000_000_000_000_000_000_000_000_000_000_000_000` with the i128 feature.
const DISTANCE: GridPrecision = 2_000_000;
/// Move the floating origin back to the "true" origin when the user presses the spacebar to emulate
/// disabling the plugin. Normally you would make your active camera the floating origin to avoid
/// this issue.
fn toggle_plugin(
input: Res<ButtonInput<KeyCode>>,
grids: Grids,
mut text: Query<&mut Text>,
mut disabled: Local<bool>,
mut floating_origin: Query<(Entity, &mut CellCoord), With<FloatingOrigin>>,
) -> Result {
if input.just_pressed(KeyCode::Space) {
*disabled = !*disabled;
}
let this_grid = grids
.parent_grid(floating_origin.single().unwrap().0)
.unwrap();
let mut origin_cell = floating_origin.single_mut()?.1;
let index_max = DISTANCE / this_grid.cell_edge_length() as GridPrecision;
let increment = index_max / 100;
let msg = if *disabled {
if origin_cell.x > 0 {
origin_cell.x = 0.max(origin_cell.x - increment);
origin_cell.y = 0.max(origin_cell.y - increment);
origin_cell.z = 0.max(origin_cell.z - increment);
"Disabling..."
} else {
"Floating Origin Disabled"
}
} else if origin_cell.x < index_max {
origin_cell.x = index_max.min(origin_cell.x.saturating_add(increment));
origin_cell.y = index_max.min(origin_cell.y.saturating_add(increment));
origin_cell.z = index_max.min(origin_cell.z.saturating_add(increment));
"Enabling..."
} else {
"Floating Origin Enabled"
};
let dist =
index_max.saturating_sub(origin_cell.x) * this_grid.cell_edge_length() as GridPrecision;
let thousands = |num: GridPrecision| {
num.to_string()
.as_bytes()
.rchunks(3)
.rev()
.map(core::str::from_utf8)
.collect::<Result<Vec<&str>, _>>()
.unwrap()
.join(",") // separator
};
text.single_mut()?.0 = format!(
"Press Spacebar to toggle: {msg}\nCamera distance to floating origin: {}\nMesh distance from origin: {}",
thousands(dist),
thousands(DISTANCE)
);
Ok(())
}
#[derive(Component)]
struct Rotator;
fn rotator_system(time: Res<Time>, mut query: Query<&mut Transform, With<Rotator>>) {
for mut transform in &mut query {
transform.rotate_y(time.delta_secs());
}
}
fn setup_ui(mut commands: Commands) {
commands.spawn((
Text::default(),
TextFont {
font_size: 30.0,
..default()
},
Node {
position_type: PositionType::Absolute,
top: Val::Px(12.0),
left: Val::Px(12.0),
..default()
},
));
}
fn setup_scene(mut commands: Commands, asset_server: Res<AssetServer>) {
commands.spawn_big_space_default(|root| {
let d = DISTANCE / root.grid().cell_edge_length() as GridPrecision;
let distant_grid_cell = CellCoord::new(d, d, d);
// Normally, we would put the floating origin on the camera. However in this example, we
// want to show what happens as the camera is far from the origin, to emulate what
// happens when this plugin isn't used.
root.spawn_spatial((distant_grid_cell, FloatingOrigin));
root.spawn_spatial((
SceneRoot(asset_server.load("models/low_poly_spaceship/scene.gltf#Scene0")),
Transform::from_scale(Vec3::splat(0.2)),
distant_grid_cell,
Rotator,
))
.with_child((
SceneRoot(asset_server.load("models/low_poly_spaceship/scene.gltf#Scene0")),
Transform::from_xyz(0.0, 0.0, 20.0),
));
// light
root.spawn_spatial((
DirectionalLight::default(),
Transform::from_xyz(4.0, -10.0, -4.0),
distant_grid_cell,
));
// camera
root.spawn_spatial((
Camera3d::default(),
Transform::from_xyz(8.0, 8.0, 0.0).looking_at(Vec3::ZERO, Vec3::Y),
distant_grid_cell,
));
});
}

87
examples/cam_follow.rs Normal file
View File

@ -0,0 +1,87 @@
//! Demonstrates how to have the camera follow a target object
use bevy::prelude::*;
use bevy_panorbit_camera::{PanOrbitCamera, PanOrbitCameraPlugin};
use std::f32::consts::TAU;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_plugins(PanOrbitCameraPlugin)
.add_systems(Startup, setup)
.add_systems(Update, (animate_cube, cam_follow).chain())
.run();
}
#[derive(Component)]
struct Cube;
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// Ground
commands.spawn((
Mesh3d(meshes.add(Plane3d::default().mesh().size(0.5, 0.5))),
MeshMaterial3d(materials.add(Color::srgb(0.3, 0.5, 0.3))),
));
// Cube
commands
.spawn((
Mesh3d(meshes.add(Cuboid::new(0.1, 0.1, 0.1))),
MeshMaterial3d(materials.add(Color::srgb(0.8, 0.7, 0.6))),
Transform::from_xyz(0.0, 0.5, 0.0),
))
.insert(Cube);
// Light
commands.spawn((
PointLight {
shadows_enabled: true,
..default()
},
Transform::from_xyz(4.0, 8.0, 4.0),
));
// Camera
commands.spawn((
Transform::from_translation(Vec3::new(0.0, 0.15, 0.5)),
PanOrbitCamera {
// Panning the camera changes the focus, and so you most likely want to disable
// panning when setting the focus manually
pan_sensitivity: 0.0,
// If you want to fully control the camera's focus, set smoothness to 0 so it
// immediately snaps to that location. If you want the 'follow' to be smoothed,
// leave this at default or set it to something between 0 and 1.
pan_smoothness: 0.0,
..default()
},
));
}
/// Move the cube in a circle around the Y axis
fn animate_cube(
time: Res<Time>,
mut cube_q: Query<&mut Transform, With<Cube>>,
mut angle: Local<f32>,
) {
if let Ok(mut cube_tfm) = cube_q.single_mut() {
// Rotate 20 degrees a second, wrapping around to 0 after a full rotation
*angle += 20f32.to_radians() * time.delta_secs() % TAU;
// Convert angle to position
let pos = Vec3::new(angle.sin() * 0.15, 0.05, angle.cos() * 0.15);
cube_tfm.translation = pos;
}
}
/// Set the camera's focus to the cube's position
fn cam_follow(mut pan_orbit_q: Query<&mut PanOrbitCamera>, cube_q: Query<&Transform, With<Cube>>) {
if let Ok(mut pan_orbit) = pan_orbit_q.single_mut() {
if let Ok(cube_tfm) = cube_q.single() {
pan_orbit.target_focus = cube_tfm.translation;
// Whenever changing properties manually like this, it's necessary to force
// PanOrbitCamera to update this frame (by default it only updates when there are
// input events).
pan_orbit.force_update = true;
}
}
}

98
examples/model.rs Normal file
View File

@ -0,0 +1,98 @@
use bevy::{
core_pipeline::{bloom::Bloom, tonemapping::Tonemapping},
prelude::*,
window::WindowMode,
};
use bevy_inspector_egui::{bevy_egui::EguiPlugin, quick::WorldInspectorPlugin};
use bevy_panorbit_camera::{PanOrbitCamera, PanOrbitCameraPlugin};
use solar_sim::InitialState;
fn camera(mut commands: Commands) {
commands.spawn((
PanOrbitCamera {
focus: Vec3::new(0., 0.0, 0.0),
zoom_lower_limit: SCALE,
radius: Some(SCALE * 10.),
..default()
},
Camera {
hdr: true,
clear_color: ClearColorConfig::Custom(Color::BLACK),
..default()
},
Projection::Perspective(PerspectiveProjection {
near: 1e-9, // Very close near plane for extreme zooming
..default()
}),
Tonemapping::TonyMcMapface,
Bloom::NATURAL,
));
commands.spawn(DirectionalLight {
shadows_enabled: true,
illuminance: 50_000.0,
..default()
});
}
const SCALE: f32 = 1.;
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
// Load initial state from RON file
let initial_state_content = match std::fs::read_to_string("assets/initial_state.ron") {
Ok(content) => content,
Err(err) => {
error!("Failed to read initial_state.ron: {}", err);
return;
}
};
let initial_state: InitialState = match ron::from_str(&initial_state_content) {
Ok(state) => state,
Err(err) => {
error!("Failed to parse initial_state.ron: {}", err);
return;
}
};
initial_state
.bodies
.iter()
.enumerate()
.for_each(|(i, body)| {
commands
.spawn(Transform::from_translation(Vec3::new(
(i) as f32 * SCALE * 10 as f32,
0.,
0.,
)))
.with_children(|parent| {
let scene = asset_server.load(format!("models/{}#Scene0", body.model.path));
parent.spawn((
SceneRoot(scene),
Transform::from_scale(Vec3::new(
body.model.scale.0,
body.model.scale.1,
body.model.scale.2,
)),
));
});
});
}
fn main() {
App::new()
.add_plugins(DefaultPlugins.set(WindowPlugin {
primary_window: Some(Window {
title: "Solar Sim".to_string(),
mode: WindowMode::BorderlessFullscreen(MonitorSelection::Primary),
..default()
}),
..default()
}))
.add_plugins(EguiPlugin::default())
.add_plugins(WorldInspectorPlugin::new())
.add_plugins(PanOrbitCameraPlugin)
.add_systems(Startup, (camera, setup))
.run();
}

2329
src/jpl_horizon.rs Normal file

File diff suppressed because it is too large Load Diff

23
src/lib.rs Normal file
View File

@ -0,0 +1,23 @@
use serde::Deserialize;
// Data structures for deserializing initial_state.ron
#[derive(Deserialize)]
pub struct InitialState {
pub bodies: Vec<CelestialBodyData>,
}
#[derive(Deserialize)]
pub struct CelestialBodyData {
pub name: String,
pub mass: f64, // kg
pub radius: f64, // km
pub position: (f64, f64, f64), // AU
pub velocity: (f64, f64, f64), // AU/day
pub model: ModelInfo,
}
#[derive(Deserialize)]
pub struct ModelInfo {
pub path: String,
pub scale: (f32, f32, f32),
}

View File

@ -2,46 +2,50 @@ use bevy::{
core_pipeline::{bloom::Bloom, tonemapping::Tonemapping}, core_pipeline::{bloom::Bloom, tonemapping::Tonemapping},
math::DVec3, math::DVec3,
prelude::*, prelude::*,
window::WindowMode, window::{WindowMode, WindowResolution},
}; };
use bevy_inspector_egui::{bevy_egui::EguiPlugin, quick::WorldInspectorPlugin}; use bevy_inspector_egui::{bevy_egui::EguiPlugin, quick::WorldInspectorPlugin};
use bevy_panorbit_camera::{PanOrbitCamera, PanOrbitCameraPlugin}; use bevy_panorbit_camera::{PanOrbitCamera, PanOrbitCameraPlugin};
use iyes_perf_ui::{PerfUiPlugin, prelude::*};
use solar_sim::InitialState;
mod jpl_horizon;
// Scaling factor to convert AU to game units // Scaling factor to convert AU to game units
// Neptune is approximately 30.1 astronomical units (AU) from the Sun // Neptune is approximately 30.1 astronomical units (AU) from the Sun
// Point light effective range is about 10 game units, so 10 game units = ~30 AU // Point light effective range is about 10 game units, so 10 game units = ~30 AU
const AU_TO_GAME_UNITS: f64 = 0.3; const AU_TO_GAME_UNITS: f64 = 1. / 3.;
// Unit wrapper types - all distances in AU // Unit wrapper types - all distances in AU
#[derive(Clone, Copy, Debug, PartialEq)] #[derive(Clone, Copy, Debug, PartialEq, Reflect)]
pub struct DistanceAu(pub f64); pub struct DistanceAu(pub f64);
#[derive(Clone, Copy, Debug, PartialEq)] #[derive(Clone, Copy, Debug, PartialEq, Reflect)]
pub struct PositionAu(pub DVec3); pub struct PositionAu(pub DVec3);
#[derive(Clone, Copy, Debug, PartialEq)] #[derive(Clone, Copy, Debug, PartialEq, Reflect)]
pub struct VelocityAuPerDay(pub DVec3); pub struct VelocityAuPerDay(pub DVec3);
#[derive(Clone, Copy, Debug, PartialEq)] #[derive(Clone, Copy, Debug, PartialEq, Reflect)]
pub struct MassKg(pub f64); pub struct MassSolarMass(pub f64);
#[derive(Clone, Debug, PartialEq)] #[derive(Clone, Debug, PartialEq, Reflect)]
pub struct ObjectName(pub String); pub struct ObjectName(pub String);
// Component wrappers // Component wrappers
#[derive(Component)] #[derive(Component, Reflect)]
struct Position(PositionAu); struct Position(PositionAu);
#[derive(Component)] #[derive(Component, Reflect)]
struct Velocity(VelocityAuPerDay); struct Velocity(VelocityAuPerDay);
#[derive(Component)] #[derive(Component, Reflect)]
struct Mass(MassKg); struct Mass(MassSolarMass);
#[derive(Component)] #[derive(Component, Reflect)]
struct Radius(DistanceAu); struct Radius(DistanceAu);
#[derive(Component)] #[derive(Component, Reflect)]
struct Name(ObjectName); struct Name(ObjectName);
#[derive(Bundle)] #[derive(Bundle)]
@ -56,92 +60,75 @@ struct ObjectBundle {
#[derive(Component)] #[derive(Component)]
struct Star; struct Star;
#[derive(Component)]
struct EmissiveEnhanced;
#[derive(Component)]
struct NeedsEmissiveEnhancement;
#[derive(Component)]
struct EmissiveEnhancementAttempts {
attempts: u32,
max_attempts: u32,
}
#[derive(Component)]
struct Earth;
// Component for UI name labels // Component for UI name labels
#[derive(Component)] #[derive(Component)]
struct ObjectLabel { struct ObjectLabel {
target_entity: Entity, target_entity: Entity,
} }
// Component to control label visibility
#[derive(Component)]
struct LabelVisible(bool);
// Component to mark objects that can be focused on with proper zoom levels // Component to mark objects that can be focused on with proper zoom levels
#[derive(Component)] #[derive(Component)]
struct Trackable {} struct Trackable {}
#[derive(Resource)]
struct Origin {
target: Option<Entity>,
}
pub struct SolarRenderingPlugin; pub struct SolarRenderingPlugin;
impl Plugin for SolarRenderingPlugin { impl Plugin for SolarRenderingPlugin {
fn build(&self, app: &mut App) { fn build(&self, app: &mut App) {
app.add_systems(Startup, (setup_rendering, setup_ui)) app.insert_resource(Origin { target: None })
.add_systems(Startup, (setup_rendering, setup_ui))
.add_systems( .add_systems(
FixedPostUpdate, FixedPostUpdate,
( (
sync_radius_to_mesh,
sync_position_to_transform, sync_position_to_transform,
sync_name_labels, sync_name_labels,
manage_label_overlaps
.after(sync_position_to_transform)
.after(sync_name_labels),
), ),
) )
.add_systems(Update, (update_label_positions, handle_label_clicks)); .add_systems(
} PostUpdate,
} (update_label_positions.after(manage_label_overlaps),),
)
fn sync_radius_to_mesh( .add_systems(Update, (handle_label_clicks, handle_speed_controls));
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
query: Query<(Entity, &Radius, Option<&Star>, Option<&Mesh3d>), Changed<Radius>>,
) {
for (entity, radius, star, existing_mesh) in query.iter() {
// Convert AU to game units for rendering
let render_radius = radius.0.0 * AU_TO_GAME_UNITS;
println!("render_radius: {:?}", render_radius);
// Create or update sphere mesh
let sphere_mesh = meshes.add(Sphere::new(render_radius as f32));
let material = materials.add(if star.is_none() {
StandardMaterial {
base_color: Color::WHITE,
..default()
}
} else {
StandardMaterial {
base_color: Color::WHITE, // Sun-like color for stars
emissive: LinearRgba::rgb(200.0, 200.0, 200.0),
..default()
}
});
if existing_mesh.is_none() {
// Add mesh and material components if they don't exist
commands
.entity(entity)
.insert((Mesh3d(sphere_mesh), MeshMaterial3d(material)));
} else {
// Update existing mesh
commands.entity(entity).insert(Mesh3d(sphere_mesh));
}
} }
} }
fn sync_position_to_transform( fn sync_position_to_transform(
mut commands: Commands, mut query: Query<(Entity, &Position, &mut Transform)>,
mut query: Query<(Entity, &Position, Option<&mut Transform>), Changed<Position>>, origin: Res<Origin>,
) { ) {
for (entity, position, transform) in query.iter_mut() { let offset = origin.target.map_or(DVec3::ZERO, |target| {
// Convert AU to game units for rendering query
let scaled_position = position.0.0 * AU_TO_GAME_UNITS; .get(target)
println!("scaled_position: {:?}", scaled_position); .map_or(DVec3::ZERO, |(_, position, _)| position.0.0)
match transform { });
Some(mut t) => { for (_, position, mut transform) in query.iter_mut() {
// Update existing transform transform.translation = ((position.0.0 - offset) * AU_TO_GAME_UNITS).as_vec3();
t.translation = scaled_position.as_vec3();
}
None => {
// Insert a new Transform if it doesn't exist
commands
.entity(entity)
.insert(Transform::from_translation(scaled_position.as_vec3()));
}
};
} }
} }
@ -149,32 +136,26 @@ fn setup_rendering(mut commands: Commands) {
// Spawn camera with pan/orbit/zoom controls // Spawn camera with pan/orbit/zoom controls
// Place it at a good distance to view the solar system // Place it at a good distance to view the solar system
commands.spawn(( commands.spawn((
Camera3d::default(), PanOrbitCamera {
zoom_lower_limit: 1e-6,
..default()
},
Camera { Camera {
hdr: true, hdr: true,
clear_color: ClearColorConfig::Custom(Color::BLACK), clear_color: ClearColorConfig::Custom(Color::BLACK),
..default() ..default()
}, },
Projection::Perspective(PerspectiveProjection { Projection::Perspective(PerspectiveProjection {
near: 1e-9, // Very close near plane for extreme zooming near: 1e-8, // Very close near plane for extreme zooming
far: 1e-2,
..default() ..default()
}), }),
Tonemapping::TonyMcMapface, Tonemapping::TonyMcMapface,
Transform::from_translation(Vec3::new(0., 0., 10.0)), Transform::from_translation(Vec3::new(0., 0., 10.0)),
Bloom::NATURAL, Bloom::NATURAL,
PanOrbitCamera {
pan_sensitivity: 0.0, // Disable panning by setting sensitivity to 0
focus: Vec3::ZERO,
zoom_lower_limit: 1e-8,
..default()
},
)); ));
commands.spawn(PointLight { commands.spawn(PerfUiAllEntries::default());
color: Color::WHITE,
shadows_enabled: true,
..default()
});
} }
fn setup_ui(mut commands: Commands) { fn setup_ui(mut commands: Commands) {
@ -199,7 +180,7 @@ fn sync_name_labels(
.any(|label| label.target_entity == entity); .any(|label| label.target_entity == entity);
if !has_label { if !has_label {
// Create new label // Create new label with scaled font size
commands.spawn(( commands.spawn((
Text::new(name.0.0.clone()), Text::new(name.0.0.clone()),
TextColor(Color::WHITE), TextColor(Color::WHITE),
@ -218,40 +199,115 @@ fn sync_name_labels(
ObjectLabel { ObjectLabel {
target_entity: entity, target_entity: entity,
}, },
LabelVisible(true), // Start visible by default
)); ));
} }
} }
} }
fn update_label_positions( fn manage_label_overlaps(
mut label_query: Query<(&mut Node, &ObjectLabel, &mut Text), With<ObjectLabel>>, mut label_query: Query<(&ObjectLabel, &mut LabelVisible)>,
objects_query: Query<(&Position, &Name, &Radius)>, objects_query: Query<(&GlobalTransform, &Name, &Radius)>,
camera_query: Query<(&Camera, &GlobalTransform)>, camera_query: Query<(&Camera, &GlobalTransform)>,
) { ) {
let Ok((camera, camera_transform)) = camera_query.single() else { let Ok((camera, camera_transform)) = camera_query.single() else {
return; return;
}; };
for (mut node, label, mut text) in label_query.iter_mut() { // Collect all on-screen objects with their screen positions and radii
if let Ok((position, name, _radius)) = objects_query.get(label.target_entity) { let mut visible_objects: Vec<(Entity, Vec2, f64, String)> = Vec::new();
let world_pos = position.0.0 * AU_TO_GAME_UNITS;
for (label, _) in label_query.iter() {
if let Ok((global_transform, name, radius)) = objects_query.get(label.target_entity) {
let world_pos = global_transform.translation();
if let Ok(screen_pos) = camera.world_to_viewport(camera_transform, world_pos) {
visible_objects.push((
label.target_entity,
screen_pos,
radius.0.0, // radius in AU
name.0.0.clone(),
));
}
}
}
// Reset all labels to visible first
for (_, mut visible) in label_query.iter_mut() {
visible.0 = true;
}
// Check for overlaps and hide smaller objects
const OVERLAP_THRESHOLD: f32 = 50.0; // pixels
for i in 0..visible_objects.len() {
for j in (i + 1)..visible_objects.len() {
let (entity_a, pos_a, radius_a, name_a) = &visible_objects[i];
let (entity_b, pos_b, radius_b, name_b) = &visible_objects[j];
let distance = pos_a.distance(*pos_b);
if distance < OVERLAP_THRESHOLD {
// Determine which label to hide based on radius (larger wins)
let entity_to_hide = if radius_a > radius_b {
*entity_b
} else if radius_b > radius_a {
*entity_a
} else {
// If radii are equal, prefer alphabetically first name
if name_a < name_b {
*entity_b
} else {
*entity_a
}
};
// Hide the smaller object's label
for (label, mut visible) in label_query.iter_mut() {
if label.target_entity == entity_to_hide {
visible.0 = false;
break;
}
}
}
}
}
}
fn update_label_positions(
mut label_query: Query<(&mut Node, &ObjectLabel, &mut Text, &LabelVisible), With<ObjectLabel>>,
objects_query: Query<(&GlobalTransform, &Name, &Radius)>,
camera_query: Query<(&Camera, &GlobalTransform)>,
) {
let Ok((camera, camera_transform)) = camera_query.single() else {
return;
};
for (mut node, label, mut text, visible) in label_query.iter_mut() {
if !visible.0 {
// Label is marked as invisible due to overlap, hide it
node.display = Display::None;
continue;
}
if let Ok((global_transform, name, _radius)) = objects_query.get(label.target_entity) {
let world_pos = global_transform.translation();
if let Ok(screen_pos) = camera.world_to_viewport(camera_transform, world_pos) {
// Apply scale factor to label offset to maintain relative positioning
let scaled_offset = 10.0;
if let Ok(screen_pos) = camera.world_to_viewport(camera_transform, world_pos.as_vec3())
{
// Position the label on screen, offset slightly to avoid overlapping the object // Position the label on screen, offset slightly to avoid overlapping the object
node.left = Val::Px(screen_pos.x + 10.0); node.left = Val::Px(screen_pos.x + scaled_offset);
node.top = Val::Px(screen_pos.y - 10.0); node.top = Val::Px(screen_pos.y - scaled_offset);
node.display = Display::Flex; // Make sure it's visible
// Update text in case name changed // Update text in case name changed
text.0 = name.0.0.clone(); text.0 = name.0.0.clone();
} else { } else {
// Object is off-screen, hide label by moving it off-screen // Object is off-screen, hide label
node.left = Val::Px(-1000.0); node.display = Display::None;
node.top = Val::Px(-1000.0);
} }
} else { } else {
// Target entity no longer exists, remove label // Target entity no longer exists, hide label
// Note: In a more complex system, you might want to handle this in a separate cleanup system node.display = Display::None;
} }
} }
} }
@ -261,151 +317,245 @@ fn handle_label_clicks(
(&Interaction, &ObjectLabel), (&Interaction, &ObjectLabel),
(Changed<Interaction>, With<ObjectLabel>), (Changed<Interaction>, With<ObjectLabel>),
>, >,
trackable_objects: Query<(&Position, &Trackable, &Radius)>, trackable_objects: Query<(&Transform, &Trackable, &Radius)>,
mut camera_query: Query<&mut PanOrbitCamera>, mut camera: Single<&mut PanOrbitCamera>,
mut origin: ResMut<Origin>,
) { ) {
for (interaction, label) in interaction_query.iter() { for (interaction, label) in interaction_query.iter() {
if *interaction == Interaction::Pressed { if *interaction == Interaction::Pressed {
if let Ok((position, _trackable, radius)) = trackable_objects.get(label.target_entity) { if let Ok((_target_transform, _trackable, radius)) =
if let Ok(mut pan_orbit) = camera_query.single_mut() { trackable_objects.get(label.target_entity)
// Focus camera on the clicked object using target values for smooth transitions {
pan_orbit.target_focus = (position.0.0 * AU_TO_GAME_UNITS).as_vec3(); // Calculate appropriate distance based on entity radius (with some padding)
pan_orbit.target_radius = (radius.0.0 * AU_TO_GAME_UNITS) as f32 * 4.; let entity_radius = (radius.0.0 * AU_TO_GAME_UNITS) as f32;
camera.target_radius = entity_radius * 10.;
// Also set the immediate values to ensure it takes effect camera.zoom_lower_limit = entity_radius * 4.;
// pan_orbit.focus = position.0.0.as_vec3(); camera.target_focus = Vec3::ZERO;
// pan_orbit.radius = Some(trackable.zoom_distance); origin.target = Some(label.target_entity);
}
} }
} }
} }
} }
fn setup_solar_system(mut commands: Commands) { fn handle_speed_controls(
// Sun - From NASA JPL Horizons data (J2000.0 epoch) keyboard_input: Res<ButtonInput<KeyCode>>,
// Physical properties: Mass = 1988410 x 10^24 kg, Radius = 695700 km = 0.00465 AU mut time: ResMut<Time<Virtual>>,
commands.spawn(( ) {
ObjectBundle { // Pause/Unpause with SPACE
name: Name(ObjectName("Sun".to_string())), if keyboard_input.just_pressed(KeyCode::Space) {
position: Position(PositionAu(DVec3::new(0.0, 0.0, 0.0))), // At barycenter if time.is_paused() {
velocity: Velocity(VelocityAuPerDay(DVec3::new(0.0, 0.0, 0.0))), // Stationary relative to barycenter time.unpause();
mass: Mass(MassKg(1.988410e30)), // Solar mass in kg println!("Simulation RESUMED (Speed: {}x)", time.relative_speed());
radius: Radius(DistanceAu(0.00465)), // Solar radius in AU (695700 km / 149597870.691) } else {
}, time.pause();
Star, println!("Simulation PAUSED");
Trackable {}, }
)); }
// Earth - From NASA JPL Horizons data (A.D. 2000-Jan-01 12:00:00.0000 TDB) // Speed up with + or = key (double current speed, max 32x)
// Position and velocity vectors in ecliptic J2000.0 frame relative to Sun if keyboard_input.just_pressed(KeyCode::Equal)
// Mass = 5.97219 x 10^24 kg, Mean radius = 6371.01 km = 0.0000426 AU || keyboard_input.just_pressed(KeyCode::NumpadAdd)
commands.spawn(( {
if !time.is_paused() {
let current_speed = time.relative_speed();
let new_speed = (current_speed * 2.0).min(32.0);
time.set_relative_speed(new_speed);
println!("Speed: {}x", new_speed);
}
}
// Speed down with - key (halve current speed, min 1.0x)
if keyboard_input.just_pressed(KeyCode::Minus)
|| keyboard_input.just_pressed(KeyCode::NumpadSubtract)
{
if !time.is_paused() {
let current_speed = time.relative_speed();
let new_speed = (current_speed * 0.5).max(1.0);
time.set_relative_speed(new_speed);
println!("Speed: {}x", new_speed);
}
}
// Reset to normal speed with R
if keyboard_input.just_pressed(KeyCode::KeyR) {
time.set_relative_speed(1.0);
time.unpause();
println!("Speed reset to 1x");
}
}
const AU_TO_KM: f64 = 149597870.691;
fn setup_solar_system(mut commands: Commands, asset_server: Res<AssetServer>) {
// Load initial state from RON file
let initial_state_content = match std::fs::read_to_string("assets/initial_state.ron") {
Ok(content) => content,
Err(err) => {
error!("Failed to read initial_state.ron: {}", err);
return;
}
};
let initial_state: InitialState = match ron::from_str(&initial_state_content) {
Ok(state) => state,
Err(err) => {
error!("Failed to parse initial_state.ron: {}", err);
return;
}
};
for body_data in initial_state.bodies {
// Convert radius from km to AU
let radius_au = body_data.radius / AU_TO_KM; // km to AU conversion
// Convert mass from kg to solar masses
let mass_solar = body_data.mass / SOLAR_MASS_KG;
// Create base bundle
let mut entity_commands = commands.spawn((
ObjectBundle { ObjectBundle {
name: Name(ObjectName("Earth".to_string())), name: Name(ObjectName(body_data.name.clone())),
position: Position(PositionAu(DVec3::new( position: Position(PositionAu(DVec3::new(
-1.771350992727098e-1, // X = -0.177135 AU body_data.position.0,
9.672416867665306e-1, // Y = 0.967242 AU body_data.position.1,
-4.085281582511366e-6, // Z = -4.085e-6 AU body_data.position.2,
))), ))),
velocity: Velocity(VelocityAuPerDay(DVec3::new( velocity: Velocity(VelocityAuPerDay(DVec3::new(
-1.720762506872895e-2, // VX = -0.0172076 AU/day body_data.velocity.0,
-3.158782144324866e-3, // VY = -0.00315878 AU/day body_data.velocity.1,
1.049888594613343e-7, // VZ = 1.04989e-7 AU/day body_data.velocity.2,
))), ))),
mass: Mass(MassKg(5.97219e24)), // Earth mass in kg mass: Mass(MassSolarMass(mass_solar)),
radius: Radius(DistanceAu(0.0000426)), // Mean radius in AU (6371.01 km / 149597870.691) radius: Radius(DistanceAu(radius_au)),
}, },
Trackable {}, Trackable {},
Transform::default(),
Visibility::default(),
));
let scene_handle = asset_server.load(format!("models/{}#Scene0", body_data.model.path));
entity_commands.with_child((
SceneRoot(scene_handle.clone()),
Transform::from_scale(
Vec3::new(
body_data.model.scale.0,
body_data.model.scale.1,
body_data.model.scale.2,
) / AU_TO_KM as f32
* 10000.,
),
)); ));
// Moon - From NASA JPL Horizons data (A.D. 2000-Jan-01 12:00:00.0000 TDB) // Add special components for Sun and Earth
// Position and velocity vectors in ecliptic J2000.0 frame relative to Sun match body_data.name.as_str() {
// Mass = 7.349 x 10^22 kg, Mean radius = 1737.53 km = 0.0000116 AU "Sun" => {
commands.spawn(( entity_commands.insert(Star);
ObjectBundle { entity_commands.insert(NeedsEmissiveEnhancement);
name: Name(ObjectName("Moon".to_string())), entity_commands.insert(PointLight {
position: Position(PositionAu(DVec3::new( color: Color::WHITE,
-1.790843809223965e-1, // X = -0.179084 AU shadows_enabled: true,
9.654035607264573e-1, // Y = 0.965404 AU ..default()
2.383726922995396e-4, // Z = 0.000238373 AU });
))), }
velocity: Velocity(VelocityAuPerDay(DVec3::new( "Earth" => {
-1.683595459141215e-2, // VX = -0.0168360 AU/day entity_commands.insert(Earth);
-3.580960720855671e-3, // VY = -0.00358096 AU/day }
-6.540550604528720e-6, // VZ = -6.54055e-6 AU/day _ => {}
))), }
mass: Mass(MassKg(7.349e22)), // Moon mass in kg
radius: Radius(DistanceAu(0.0000116)), // Mean radius in AU (1737.53 km / 149597870.691) info!("Spawned celestial body: {}", body_data.name);
}, }
Trackable {},
));
} }
// High precision constants // High precision constants
const G_SI: f64 = 6.67430e-11; // Gravitational constant in m³/kg/s² (2018 CODATA value) const SOLAR_MASS_KG: f64 = 1.98841e30; // kg (for mass conversion)
const AU_TO_M: f64 = 149597870691.0; // AU to meters (IAU 2012 definition, exact)
const DAY_TO_S: f64 = 86400.0; // Day to seconds (exact)
// Pre-calculated G in AU³/kg/day² units for optimization // Gaussian gravitational constant (standard in astronomy)
// G_AU = G_SI * (day²/s²) / (AU³/m³) const K_GAUSS: f64 = 0.01720209895; // AU^(3/2) / (solar_mass^(1/2) × day)
// G_AU = G_SI * (DAY_TO_S²) / (AU_TO_M³)
const G_AU: f64 = G_SI * (DAY_TO_S * DAY_TO_S) / (AU_TO_M * AU_TO_M * AU_TO_M);
const STEPS: usize = 100; // G in AU^3 / (solar_mass day^2)
// Time step calculation: // Derived from Gaussian constant: G_AU = k² where k is the Gaussian constant
// FixedUpdate runs at 64fps, 1 game second = 7 days, 100 steps per FixedUpdate // This gives G×M_sun in AU³/day² units, and since we use solar mass units (M_sun = 1), G_AU = k²
// DT = (7 days / 64 fps) / 100 steps = 7 / (64 * 100) = 0.00109375 days per step const G_AU: f64 = K_GAUSS * K_GAUSS;
const DT: f64 = 7.0 / (64.0 * STEPS as f64); // Time step in days
const STEPS: usize = 20; // Number of steps per fixed update
// If FixedUpdate is 64 Hz and you want 1 day per game second: DT = 1/(64*STEPS) day/step
const DT: f64 = 1.0 / (64.0 * STEPS as f64);
fn n_body(mut query: Query<(&Mass, &mut Position, &mut Velocity)>) { fn n_body(mut query: Query<(&Mass, &mut Position, &mut Velocity)>) {
// Collect all bodies data (mass, position, velocity) // Pull data out once. This copy lets us integrate freely without borrow issues.
// (If you want zero copies, use a Resource scratch buffer and reuse it across frames.)
let mut bodies: Vec<(f64, DVec3, DVec3)> = query let mut bodies: Vec<(f64, DVec3, DVec3)> = query
.iter() .iter()
.map(|(mass, pos, vel)| (mass.0.0, pos.0.0, vel.0.0)) .map(|(mass, pos, vel)| (mass.0.0, pos.0.0, vel.0.0))
.collect(); .collect();
// Perform integration steps let n = bodies.len();
if n < 2 {
// Nothing to do; write back if needed and return
for (i, (_m, mut pos, mut vel)) in query.iter_mut().enumerate() {
if let Some(b) = bodies.get(i) {
pos.0.0 = b.1;
vel.0.0 = b.2;
}
}
return;
}
// Single reusable acceleration buffer
let mut acc: Vec<DVec3> = vec![DVec3::ZERO; n];
// Pairwise acceleration accumulation (O(n^2)/2) with Newton's 3rd law
let compute_accelerations = |bodies: &[(f64, DVec3, DVec3)], acc: &mut [DVec3]| {
acc.fill(DVec3::ZERO);
for i in 0..n - 1 {
let (mi, pi, _) = bodies[i];
for j in (i + 1)..n {
let (mj, pj, _) = bodies[j];
let r = pj - pi; // AU
let r2 = r.length_squared(); // AU^2
// Tighter epsilon in AU^2; avoids division by ~0 without killing legit close passes
if r2 > 1e-20 {
// a_i = G * m_j * r / r^3, a_j = -G * m_i * r / r^3
let inv_r = r2.sqrt().recip(); // 1 / r
let inv_r3 = inv_r * inv_r * inv_r; // 1 / r^3
let a_i = r * (G_AU * mj * inv_r3);
let a_j = r * (G_AU * mi * inv_r3);
acc[i] += a_i;
acc[j] -= a_j; // opposite direction
}
}
}
};
// Leapfrog / velocity-Verlet
for _ in 0..STEPS { for _ in 0..STEPS {
// Calculate forces for all bodies // v += a(q) * dt/2
let mut forces: Vec<DVec3> = vec![DVec3::ZERO; bodies.len()]; compute_accelerations(&bodies, &mut acc);
for i in 0..n {
for i in 0..bodies.len() { bodies[i].2 += acc[i] * (DT * 0.5);
for j in 0..bodies.len() {
if i != j {
let r_vec = bodies[j].1 - bodies[i].1; // Position difference in AU
let r_mag_au = r_vec.length();
if r_mag_au > 1e-10 {
// Avoid division by zero
// Calculate force directly in AU/day² units
let force_magnitude =
G_AU * bodies[i].0 * bodies[j].0 / (r_mag_au * r_mag_au);
let acceleration = force_magnitude / bodies[i].0; // F/m = a
let force_vec = r_vec.normalize() * acceleration;
forces[i] += force_vec;
} }
// q += v * dt
for i in 0..n {
let vel = bodies[i].2; // copy DVec3 (cheap, it's just 3 f64s)
bodies[i].1 += vel * DT;
} }
// v += a(q_new) * dt/2
compute_accelerations(&bodies, &mut acc);
for i in 0..n {
bodies[i].2 += acc[i] * (DT * 0.5);
} }
} }
// Update velocities and positions using Verlet integration // Write back
for i in 0..bodies.len() {
// Update velocity: v += a * dt
bodies[i].2 += forces[i] * DT;
// Update position: x += v * dt
let velocity = bodies[i].2;
bodies[i].1 += velocity * DT;
}
}
// Write back updated positions and velocities
for (i, (_mass, mut pos, mut vel)) in query.iter_mut().enumerate() { for (i, (_mass, mut pos, mut vel)) in query.iter_mut().enumerate() {
if let Some(body) = bodies.get(i) { let (_, p, v) = bodies[i];
pos.0.0 = body.1; pos.0.0 = p;
vel.0.0 = body.2; vel.0.0 = v;
}
} }
} }
@ -415,15 +565,26 @@ fn main() {
primary_window: Some(Window { primary_window: Some(Window {
title: "Solar Sim".to_string(), title: "Solar Sim".to_string(),
mode: WindowMode::BorderlessFullscreen(MonitorSelection::Primary), mode: WindowMode::BorderlessFullscreen(MonitorSelection::Primary),
resolution: WindowResolution::default().with_scale_factor_override(2.0),
..default() ..default()
}), }),
..default() ..default()
})) }))
.add_plugins(PanOrbitCameraPlugin)
.add_plugins(EguiPlugin::default()) .add_plugins(EguiPlugin::default())
.add_plugins(PanOrbitCameraPlugin)
.register_type::<Name>()
.register_type::<Radius>()
.register_type::<DistanceAu>()
.register_type::<Mass>()
.register_type::<MassSolarMass>()
.add_plugins(WorldInspectorPlugin::new()) .add_plugins(WorldInspectorPlugin::new())
.add_plugins(SolarRenderingPlugin) .add_plugins(SolarRenderingPlugin) // we want Bevy to measure these values for us:
.add_systems(Startup, setup_solar_system) .add_plugins(bevy::diagnostic::FrameTimeDiagnosticsPlugin::default())
.add_systems(FixedUpdate, n_body) .add_plugins(bevy::diagnostic::EntityCountDiagnosticsPlugin)
.add_plugins(bevy::diagnostic::SystemInformationDiagnosticsPlugin)
.add_plugins(bevy::render::diagnostic::RenderDiagnosticsPlugin)
.add_plugins(PerfUiPlugin)
.add_systems(Startup, (setup_solar_system).chain())
.add_systems(FixedUpdate, n_body) // Use the optimized n-body system
.run(); .run();
} }